Functional Reactive
Programming

Heinrich Apfelmus



Graphical User Interface

968 — Douglas Engelbart
"Mother of all Demos”

mouse, hyperlinks,
videoconferencing, shared-
Seisenediting, . ..

custom programming
languages




Object-Oriented
Programming (OOP)

e croxX Alto Computer

Graphical User Interface on a
desk

first object-oriented
programming language:
Small Talk



-unctional Reactive
Programming (FRP)

e Conal Elliott Paul
Hudak: ‘Functional Reactive
Animation”

functional reactive
programming

declarative programming with
data that changes over time

Functional Reactive Animation

Conal Elliott
Microsoft Research
Graphies Group

conal@microsoft.com

Abstract

Fran | Functional Reactive Animation) s a collection of data
types and fenclions for composing richly mteractive, mults
meschia ansmations, The Key wleas m Pran are its sotions ol
behaviors and cvends. Behaviors are Gune-varving, reactive
values, while events are sets of arbidranly complex conds
tiane, carrying possibly 1 imformation, Mot traditional
\-lll.‘l’.\ can be treated as behaviors wd when Hiages e
thus treated, they become ammations, Although these no-
Lot are captured an data types sathier than a programming
wguage, we provide them with a denotational semantics,
mchshing a proper treatment of real Gine, Lo gusle reason-
g and nplementation. A method o effectively and ef-
ficently perform ecvemt deleclion using inlerval analysis is
alwa described, which relies on the partial inflormation strc-
ture on the domain of evest tianes. Fras has been imple-
mented m Hugs, ywelding surprsingly goad perlormance lor
Aan ke 1y Ltor-based -‘\»l-'" e svl.\l rXAm ]'l'-\ AN given, in-
cluding the ability Lo describe physical phenomena involving
Rravily, sprmgs, \rlnc‘ iy, '||'|"-|1 rabon, elc, usmg .|nlm.'"'_\

‘l-’:".'ll'..l .a‘ll l'lill-‘)l N>

1 Introduction

e comstraction of rehly mteractive multimedis amima-

bivasin Limisnddisie wede. IV DUV S Y waicd Y iiauds

Paul Hudak
Yae University
Dept. of Computer Sciene
paul .hudak®yale.adun

o capluring and handling =

even though moton mpm

o tumne slicing to update e
rameder, even though tl

vary an |-‘|r.'||r l; and

By Al lowing programimers
mleractive amimalon me o
“how™ of ils presentation. Wit
not be surprsing that a set |
data types, combaned with a «
guage, serves comfortably for
trast with the common pract
suages Lo progiais an the ¢
presenialon sl}'ll' Moreover,
semantes, b ;l.r-l-n-ll e funcls
mg, and sVslemaix ovel ‘I-Dh“.
erties [or supporting modeled a
Fran l-ln\.ll- » these data Lypes

Haskell [9)

Advantages of Model:
[ he benebitn ol a modk |.!lF_ appy
to those m favor of & function
grammmg parahigm, and nel

tiam, compesalulity, and clean
. . -



~unctional Programming



function

function with
function argument

example

Data:
FuNctions

odd :: Int —> Bool
odd n = '(n mod 2 E==m

filter = (Int —="Beoc®
—> [Int]l —= [EnEl

il ter odd [ 1258
filter even [1,2,3,4]

[ 15 2]
[2,4]



function

function
composition

example

Data:
FuNctions

inc :: Int — Int
AT e ]

i g = \ X ==l Gl

1AG i EnlE
1NEC L I RE2

1nc2
1NC3



Functional Reactive
Programming



Behavior

iR NENBenaVviio R a = lEnicT=_.

“value that changes over time”

>

* position In animation
e text value in GUI
* volume In music

» Time



-xample: Behavior

Pendulum



Behavior AP

fmap :: (a —> b)
—> Behavior a -> Behavior b

“apply function at every moment in time”

example fmap reverse " Functional Reactive " = "evitcaeR lanoitcnuF"

/ T

Behavior String Behavior String




-xample: Behavior

Text box



Data:
Infinite Lists

infinite list il ]

“never print everything!”

[1/,:2:3 748
[1,2,3,4,5, 64

take first elements take 4 [1..]
take 7 [1..]

“botentially infinite”



Fvent

type Event a = [(Time, a)l

‘occurrences that happen at particular times”

>

* mouse clicks in GU|
SR @les m music * %

» Time




cvent AP

unionWith :: (a —> a —> a)
—> Event a —> Event a —> Event a

‘merge event occurrences”

example
* g O I g
o
O
> > >

Event a Event a Event a



VWhy!
Traditional OOP

Up Down Count=3

counter = Value(0)

on click up do
counter.update(\c —> c + 1)

on click down do
counter.update(\c —=> ¢ - 1)



VWhy!
FRP

Up Down Count=3

“specify all dependencies at declaration”

counter <- accumB 0 $ unionWith (.)
e — c + 1) <% cliecle TR
Bhe - ¢ - 1) =% cliclc davs



-xample: Event

Counter



-RP AP

reactive-banana: | 6 primitive functions

instance Functor Behavior — fmap

instance Applicative Behavior —— pure, (<x>)

instance Functor Event — Ttmap

instance Monad Moment — return, (>>=)
instance MonadFix Moment — mfix

never :: Event a

unionWith :: (a —> a —> a) —> Event a -> Event a —> Event a
filterE *: (a —> Bool) —> Event a —> Event a

(<@>) :: Behavior (a —> b) —> Event a —> Event b
stepper i a —> Event a —> Moment (Behavior a)
va lueB :: Behavior a —> Moment a

observeE :: Event (Moment a) —-> Event a

switchE :: Event (Event a) —> Moment (Event a)

switchB :: Behavior a —> Event (Behavior a) —> Moment (Behavior a)



Languages & Libraries

* Haskell:

» reactive-banana, threepenny-gui

« reflex, reflex-dom

* frpnow

* Java, Scala, C++, C#:

e sodium

> Bkl


https://wiki.haskell.org/Reactive-banana
https://wiki.haskell.org/Threepenny-gui
https://hackage.haskell.org/package/reflex
https://hackage.haskell.org/package/reflex-dom
https://hackage.haskell.org/package/frpnow
https://github.com/SodiumFRP/sodium/
http://elm-lang.org/

Functional Reactive
Programming

“specify all dependencies at declaration”




Image Credits

* "Mother of All Demos’: SRI International
o< lio Computer: CC-BY-2.0 Michael Hicks



