
Functional Reactive	


Programming 

Heinrich Apfelmus



Graphical User Interface

1968 – Douglas Engelbart	


“Mother of all Demos”	


!

mouse, hyperlinks, 
videoconferencing, shared-
screen editing, …	


!

custom programming 
languages



Object-Oriented	


Programming (OOP)

1973 – Xerox Alto Computer 

Graphical User Interface on a 
desk	


!

first object-oriented 
programming language: 
SmallTalk



Functional Reactive	


Programming (FRP)

1997 – Conal Elliott, Paul 
Hudak: “Functional Reactive 
Animation”	


!

functional reactive 
programming	



=	


declarative programming with 
data that changes over time



Functional Programming



Data:	


Functions
odd :: Int -> Bool 
odd n = (n `mod` 2) == 1

filter odd  [1,2,3,4] = [1,3] 
filter even [1,2,3,4] = [2,4]

filter :: (Int -> Bool) 
       -> [Int] -> [Int]

function

function with	


  function argument

example



Data:	


Functions
inc :: Int -> Int 
inc n = n + 1

inc2 = inc . inc 
inc3 = inc . inc2

f . g = \x -> f (g x)

function

function	


  composition

example



Functional Reactive	


Programming



Behavior
type Behavior a = Time -> a

• position in animation	


• text value in GUI	


• volume in music

“value that changes over time”

Time

a



Example: Behavior
Pendulum



Behavior API
fmap :: (a -> b) 
     -> Behavior a -> Behavior b

example

“apply function at every moment in time”

Behavior String Behavior String



Example: Behavior
Text box



Data:	


Infinite Lists
[1..]

take 4 [1..] = [1,2,3,4]

infinite list

take first elements

“never print everything!”

“potentially infinite”

take 7 [1..] = [1,2,3,4,5,6,7]



Event
type Event a = [(Time, a)]

• mouse clicks in GUI	


• notes in music

“occurrences that happen at particular times”

Time

a



Event API
unionWith :: (a -> a -> a) 
     -> Event a —> Event a -> Event a

“merge event occurrences”

example

Event a Event a Event a



Why?	


Traditional OOP

counter = Value(0)

on click up   do  
    counter.update(\c -> c + 1)

on click down do  
    counter.update(\c -> c - 1)



Why?	


FRP

counter <- accumB 0 $ unionWith (.) 
    ((\c -> c + 1) <$ click up  ) 
    ((\c -> c - 1) <$ click down)

“specify all dependencies at declaration”



Example: Event
Counter



FRP API

instance Functor     Behavior       —- fmap   
instance Applicative Behavior       —- pure, (<*>) 
instance Functor     Event          —- fmap 
instance Monad       Moment         —- return, (>>=) 
instance MonadFix    Moment         —- mfix 
!
never     :: Event a 
unionWith :: (a -> a -> a) -> Event a -> Event a -> Event a 
filterE   :: (a -> Bool)   -> Event a -> Event a 
!
(<@>)     :: Behavior (a -> b) -> Event a -> Event b 
stepper   ::                 a -> Event a -> Moment (Behavior a) 
!
valueB    :: Behavior a       -> Moment a 
observeE  :: Event (Moment a) -> Event a 
switchE   :: Event (Event  a) -> Moment (Event a) 
switchB   :: Behavior a -> Event (Behavior a) -> Moment (Behavior a)

reactive-banana: 16 primitive functions



Languages & Libraries

• Haskell:	



• reactive-banana, threepenny-gui	



• reflex, reflex-dom	



• frpnow	



• Java, Scala, C++, C#:	



• sodium	



• Elm

https://wiki.haskell.org/Reactive-banana
https://wiki.haskell.org/Threepenny-gui
https://hackage.haskell.org/package/reflex
https://hackage.haskell.org/package/reflex-dom
https://hackage.haskell.org/package/frpnow
https://github.com/SodiumFRP/sodium/
http://elm-lang.org/


“specify all dependencies at declaration”

Functional Reactive	


Programming 



Image Credits

• “Mother of All Demos”: SRI International	


• “Xerox Alto Computer”: CC-BY-2.0 Michael Hicks


