

Clojure Hash Maps:
plenty of room at the bottom

@spinningtopsofdoom
@2kliph
@bendyworks

Building an alien space ship

● Avoiding the gray goo scenario when making
nano machines

● What cup of tea is best to power your Infinite
Improbability Drive (earl gray hot)

● How to make the spaceship bigger on the inside
then on the outside

Talk about real alien technology

Immutability: a cornerstone of functional programming

See it's used in

● Scala
● Elixir
● Haskell
● Clojure

Why immutable?

● Deeply nested heterogeneous data
● Send data off to another part of the code: fire

and forget :)
● Fast delta diffing

– E.g. React shouldComponentUpdate

There's always a catch

● Orders of magnitude slower
● Efficient implementations have constraints, like

sortable keys, storing deltas in the data
structure itself
– Increasing cognitive overhead for developers

Hash Array Mapped Tries provide
performance improvements

● 2 to 3 times slower for common operations
– That's a lot better than an order of magnitude

slower

● No constraints
– Only need a hashable key

● Reduced cognitive overhead

Optimizing Hash-Array Mapped Tries for
Fast and Lean Immutable JVM Collections

by Michael J. Steindorfer and Jurgen J. Vinju

Compressed Hash-Array Mapped Prefix-tree

CHAMP

ClojureScript Implementation
https://github.com/bendyworks/lean-map

CHAMP gives you guaranteed Hash
Map performance gains

● Iteration by 2x
● Equality checking by 10x to 100x

CHAMP trims your Hash Maps

CHAMP makes Hash Maps more wieldy, making
them both simpler and easier

Code size is two thirds the size of the original
implementation

Overview of Clojure Hash Maps

Clojure Hash Maps tree of nodes
32 way branching factor

Node internals

:foo 3 5:bar nil

metadata

Key :foo Key 3

How a key finds a node

20 10 18 3 5 126

Key: :foo Hash: 1268894036

20

10

18

First major improvement
Removes problems with sub node references

Sub node reference is a psuedo Key
Value pair with nil as the "key"

:foo 3 5:bar nil

Doubles overhead for each sub
node reference

Adds incidental complexity

● Needs a flag for nil key and field for nil
values

● Optimized node (Array Node) just containing
sub node references
– Happens when normal node's array has 32

elements

● Further complications with second problem

Sub node references are scattered
throughout a nodes array

6 6 nil:foo :bar 3 3nil

Combined with nil marker value makes that
you you have to ask

"Is it a Key Value pair or sub node reference?"

for every operation

Makes iteration a wiki walk

The Roman Empire was the post-
Roman Republic period

The Roman Republic was the period
of ancient Roman civilization

beginning with the

Lots more link clicking...

Awareness is the ability to perceive,
to feel, or to be conscious of events,

objects, thoughts, emotions, or
sensory patterns

What was the next word after
Roman Republic?

Wiki Walk Iteration

● Bad locality
– Blows the stack

– CPU caches are never hot

CHAMP node improvements

Key Value Pairs in front, Sub Node
references in back

6 6:foo :bar 3 3

Decomplect metadata

6 6:foo :bar 3 3

metadata

KV metadata

node metadata

Lower memory overhead by
removing nil marker values

Removes all sub node incidental
complexity

● nil key flag
● nil value field
● Array Node
● Check for Key Value or Sub node reference

2X speedup by changing iteration
from wiki walk to a linear scan

Original Hash Map iteration
algorithm (pseudocode)

● If nil flag is true return [nil, <nil value>]

● For normal nodes
– If key is not nil then return the Key Value pair

– Otherwise go to sub node and repeat

● For Array node
– If element is nil continue

– Otherwise go to sub node and repeat

CHAMP iteration algorithm

1.Iterate though Key Value pairs

2.Iterate through sub node(s) repeating step one

Comparison
● Seven lines vs two lines
● Three conditionals vs none
● Polymorphism vs no polymorphism

CHAMP Equality Check
improvements

Clojure Puzzler

Sloppy Cleaning

(def base-map (hash-map))
(def one-million 1000000)

(def full-map
 (reduce
 (fn [m i] (assoc m i 0))
 base-map
 (range one-million)))

(def same-map
 (reduce
 (fn [m i] (dissoc m I))
 full-map
 (range one-million)))

(= base-map same-map) ;; true
(time (into {} base-map)) ;; 140 microseconds
(time (into {} same-map)) ;; ??? microseconds

A) 140 microseconds

B) 280 microseconds

C) 1400 microseconds

D) 14000 microseconds

E) 31000 microseconds

E) 31000 microseconds

Original Delete Algorithm

6 6:foo :bar

6 6:foo :bar 3 3

This leads to

3 3 4 4 5 5 6 6

nil nil nil nil

2 21 1 nil nil

nil nil nil nil

nilnil

empty node empty node empty node empty node

CHAMP Delete Algorithm

1 1

3 32 2

1 1 2 2

1 1

3 32 2

1 1

2 2

1 1 2 2

Lowers memory overhead that
occurs from deletion

So what? This only really matters in
pathological cases

Equal CHAMP maps have the exact same
layout in memory

We don't have to compare all Key Values we
can compare nodes (pointer equality)

Equality check is now O(log n) vs
O(n) leading to 100x performance

improvement

Assuming maps share structure

Structural Sharing

We still get 10x performance boost
for maps don't share any structure

● Original comparison has overhead due to
Clojure abstractions (sequences and lookup)

● CHAMP comparison is only comparing two
arrays

Caveats
● Javascript version: addition: 8% slower;

deletion: 10 - 20% slower
– Compared to current ClojureScript version

● JVM version: comparable speed to HAMT
– Used in Rascal (Steindorfer & Vinju)

– Christopher Grand has ported CHAMP to Java
using Clojure's hashing functions

http://www.rascal-mpl.org/

CHAMP improvements paves the
way for future improvements

CHAMP internals are much easier to work
with and reason about

Two Future possibilities

● Merge and Diff operations could have greatly
increased performance

● Similar to RRB Vectors for Vectors

Interesting work on merging

● Christopher Grand is investigating using CHAMP as a
basis for confluent hash maps
– Uses node metadata to mark transient / persistent nodes

– Removes marker objects needed for addition and deletion

– Makes CHAMP able to merge hash maps in O(log n) time

CHAMP is not as cool as working
nanobots

CHAMP shows Hash Maps have plenty of
room at the bottom compared to original

ClojureScript HAMT implementation
● 2x performance for iteration

● 10 - 100x performance for equality checking

● Lower memory overhead

For Peter biggest win is making
Hash Maps much easier to
understand and implement

Clojure Hash Maps is one of
Clojure's best exports

• Scala (base hash map)
• Elixir (base hash map)
• Haskell (unordered-containers)
• Ruby (hamster)
• JavaScript (immutable.js)

Thanks

● Bendyworks for supporting my work on this
● Michael J. Steindorfer and Jurgen J. Vinju for the

CHAMP Paper
● Zach Tellman for writing Collection Check
● Martin Klepsch for porting Collection Check to

ClojureScript
● Nicolás Berger for helping me setup test harness
● David Nolen for performance and profiling

suggestions

Fin

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

