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Introduction

I Property based testing in general
I How to apply property based testing to stateful and concurrent

programs
I Running example, simple CRUD web application

I Familiar type of program
I Obviously stateful and concurrent
I Non-obvious property?

I Using the quickcheck-state-machine Haskell library, but
the principles are general

https://github.com/advancedtelematic/quickcheck-state-machine


Overview

I Reminder
I What are property based tests?
I Why are they so effective?

I Basic idea and motivation behind how the library applies
property based testing principles to stateful and concurrent
programs

I Demo
I Sequential property (catches logic and specification bugs)
I Concurrent property (catches race conditions)

I Comparison to other tools



Property based testing

I Unit tests

test :: Bool
test = reverse (reverse [1,2,3]) == [1,2,3]

I Property based tests

prop :: [Int] -> Bool
prop xs = reverse (reverse xs) == xs

I Proof by (structural) induction
∀xs(reverse(reverse(xs)) = xs)

I Type theory

proof : forall xs -> reverse (reverse xs) == xs
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Stateful programs, basic idea / motivation

I Take inspiration from physics
I Simplified model of reality that can predict what will happen
I Experiments against reality validate the model

I How do we model algorithms/programs?
I Gurevich’s abstract state machines/new thesis, think of finite

state machines where the states are arbitrary datatypes

I Abstract state machines are used by:
I Quiviq’s closed source version of QuickCheck for Erlang (Volvo

cars, . . . ) (Claessen et al. 2009)
I Z/B/Event-B familiy (Paris metro line 14)
I TLA+ (AWS, XBox)
I Jepsen (MongoDB, Cassandra, Zookeeper, . . . )



The quickcheck-state-machine library

I Use abstract state machine to model the program
I A model datatype, and an initial model
I A datatype of actions (things that can be happen in the system

we are modelling)
I A transition function that given an action advances the model

to the next state

I A semantics function that takes an action and runs it against
the real system

I Use pre- and post-conditions on the model to make sure that
the model agrees with reality (Floyd 1967; Hoare 1969)

I Use QuickCheck’s generation to conduct experiments that
validate the model

I Sequential property
I Parallel/concurrent property (linearisability, Herlihy and Wing

1990)



State machine model



Demo

I Simple web application
I data User { name :: Text, age :: Int }
I Create user (post request)
I Read/lookup user (get request)
I Update age (put request)
I Delete user (delete request)

I Implementation
I Servant and persistant
I Could be written using any libraries or language
I Completely independent of quickcheck-state-machine

I Specification
I Uses the quickcheck-state-machine library in the way

described above



Demo



Linearisability (fails)
I (Herlihy and Wing 1990)





Linearisability (succeeds)





Comparison to other tools
I Quiviq’s Erlang QuickCheck

I More polished and used
I Better statistics
I Closed source

I Z/B/Event-B
I Deductive proving (heavily automated)
I Refinement
I Notation

I TLA+
I Model checking (proving is also possible)
I Liveness and fairness properties can be expressed
I No connection to actual implementation

I Jepsen
I Does fault injection (e.g. network partitions)
I No shrinking (is it even possible?)



Conclusion

I State machines are useful for modelling programs
I Race condition testing for free via linearisability
I See also

I quickcheck-state-machine library on GitHub
I Oskar’s talk
I Matthias’ tutorial
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