
ENGINEERING TCP/IP WITH LOGIC

Hannes Mehnert*, ,

based on work by Peter Sewell*, Michael Norrish^, Tom Ridge*
earlier contributors are Steve Bishop*, Matthew Fairbairn*, Michael Smith*, and Keith Wansbrough*

* while at University of Cambridge, ^ NICTA

robur.io @h4nnes

Bob 2018, 23th February 2018

http://robur.io/
https://twitter.com/h4nnes

ABOUT ME
Programmer (Turbo Pascal, C, Perl, Haskell, Dylan, Visual
Basic, Python, C++, Java, Scala, Common Lisp, Coq, Idris,
Emacs Lisp, JavaScript, Agda, OCaml)
FreeBSD since 4.5 (2002), some Linux
PhD in mechanised veri�cation of the correctness of Java
programs (using separation logic) at ITU Copenhagen
PostDoc at University of Cambridge with Peter Sewell
MirageOS (see Bob 2015 keynote) core team member
Since 2018 non-pro�t robur.io to put MirageOS into
production
Looking for funding and contracts!

NETWORK PROGRAMMING
Variety of protocols (IP, ICMP, UDP, TCP etc)
Features: concurrency, packet loss, host failure, timeouts
Sockets API
Described in RFCs using informal prose and pseudocode
Ambiguous and incomplete descriptions
Protocols are hard to design and implement correctly
Testing conformance against the standards is challenging
Many obscure corner cases and failure semantics requires
considerable expertise

TCP/IP

WHAT IS TCP/IP?
Main protocol suite used for the Internet
Internet Protocol (IP) RFC 760, Jan 80 - later RFC 791, Sep
81

connectionless, best-effort for packet-switched
networks

Internet Control Message Protocol (ICMP) RFC 792, Sep
81

error messages and organisational information
User Datagram Protocol (UDP) RFC 768, Aug 80

connectionless, unreliable, integrity for messages
Transmission Control Protocol (TCP) RFC 793, Sep 81

reliable ordered error-checked delivery of byte streams

reliable, ordered, error checked delivery of byte streams

WHAT IS TCP?
Sockets API: socket, bind, listen, accept, listen, connect,
send, receive, shutdown, close
Segments transmitted via Ethernet
Connection setup and teardown
Retransmission of lost segments
Window size controls congestion
Window is negotiated continuously

TCP STATE MACHINE
LISTEN

SYN_SENT

appl:send data
send:SYN

SYN_RECEIVED

recv:SYN
send:SYN,ACK

recv:SYN
send:SYN,ACK

simultaneous open

ESTABLISHED

recv:SYN,ACK
send:ACK

CLOSED

recv:ACK
send:<nothing>

FIN_WAIT_1

appl:close
send:FIN

timeout
send:RST

appl:close
send:FIN

CLOSE_WAIT

recv:FIN
send:ACK

CLOSING
recv:FIN

send:ACK

FIN_WAIT_2

recv:ACK
send

<nothing>

TIME_WAIT

recv:FIN,ACK
send:ACK

recv:ACK
send:<nothing>

recv:FIN
send:ACKLAST_ACK

appl:close
send:FIN

recv:ACK
send:<nothing>

appl:passive open
send:<nothing>

appl:active open
send:SYN

IMPLEMENTATION ISSUES
"Mystery of hanging S3 downloads", "The many ways of
handling TCP RST packets"
Complex: described in dozens RFCs, complex state
machine
Extensible: TCP selective acknowledgement, TCP fast
open, IPv6
Security: everywhere
Congestion control: loss vs delay, more bandwidth, shared
medium (3G, wireless)
Testing: huge test space (1200 bit TCP state + 190 bit per
segment), try deployed stacks on the Internet

https://www.snellman.net/blog

https://www.snellman.net/blog

WHAT IS A BUG IN TCP/IP?
May manifest as error in connection setup or teardown
Or just introducing higher delay or less bandwidth (small
windows)
Interoperability with deployed stacks is crucial! Even if an
RFC is violated
Security: ampli�cation, off-the-path attackers (blind
window, LAND), DoS, common implementation pitfalls

FORMAL METHODS TO THE RESCUE
Clear, accessible to a broad community and easy to modify
Unambiguous, characterising exactly what behaviour is
speci�ed
Suf�ciently loose, characterising exactly what is not
speci�ed
Directly usable as a basis for conformance testing
Validated by getting used as a test oracle

HISTORY OF NETWORK SEMANTICS
Started as research project at University of Cambridge in
2000 (FreeBSD 4.6, Linux 2.4, ~9kloc HOL and 17kloc
comments)
UDP Calculus: Rigorous Semantics for Real Networking
(TACS 2001)
Rigorous speci�cation and conformance testing techniques
for network protocols, as applied to TCP, UDP, and Sockets
(SIGCOMM 2005)
Engineering with Logic: HOL Speci�cation and Symbolic-
Evaluation Testing for TCP Implementations (POPL 2006)
A rigorous approach to networking: TCP, from
implementation to protocol to service (FM 2008)
Engineering with Logic: Rigorous Test-Oracle Speci�cation
and Validation for TCP/IP and the Sockets API (JACM draft

and Validation for TCP/IP and the Sockets API (JACM draft
Nov 2017)
11 person years of work, 386 pages speci�cation
Revival in 2016 with help from Michael Norrish

MODEL
Developed in HOL4
Label transition system
Host state and label to new state
Label: duration, segment send or received, state change
Internal tau-transitions: arriving packet is not processed
immediately, but put into queue
Con�guration parameters (sequence number, ..) via
existentially quanti�ed variables
SML executable with backtracking to validate traces

EXAMPLE RULE: BIND_5

WHAT IS A TEST?
Tthee autotest implemented in OCaml, ad-hoc, large rule
coverage
Now using packetdrill (2013), which does expect-based
testing

RCV-SYN-WITHOUT-DATA-CLOSED-IPV4.PKT
 0.00 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3
+0.00 setsockopt(3, SOL_SOCKET, SO_DEBUG, [1], 4) = 0
+0.00 bind(3, ..., ...) = 0
+0.00 getsockopt(3, SOL_SOCKET, SO_RCVBUF, [65536], [4]) = 0
// Now it is in the CLOSED state.
+0.10 < S 17:17(0) win 32767
+0.00 > R. 0:0(0) ack 18 win 0
+0.00 close(3) = 0

WHAT IS A TRACE?
Series of POSIX system calls or TCP fragments
Possible injection of TCP fragments from remote host
DTrace instrumenatation outputs a trace:

Duration in ms
Socket calls
TCP segments on wire
TCP control block structure

HOLTCP.D (700 LINES)
#define act execname == "packetdrill" && self->started == 1

int ts;
int step;

#define dur() \
 this->dur = timestamp - ts ; \
 this->us = this->dur / 1000; \
 this->s = this->us / 1000000; \
 this->us = this->us % 1000000; \
 ts = timestamp ; \
 printf("(* Merge Index: %d *)\n", step); \
 step = step + 1 ; \
 printf("Lh_epsilon(duration %d %06d);\n", this->s, this->us); \
 printf("(* Merge Index: %d *)\n", step); \
 step = step + 1 ;

syscall::socket:entry

RCV-SYN-WITHOUT-DATA-CLOSED-IPV4.PKT.TRACE
(* HOST *)
initial_host (IP 192 168 0 1) (TID 19494) (FreeBSD_4_6_RELEASE) F [(NONE
(* TSOH *)
(* BEGIN *)
(* BASETIME *)
abstime 1493299013 650354405
(* EMITESAB *)
(* Merge Index: 0 *)
Lh_epsilon(duration 0 000112);
(* Merge Index: 1 *)
Lh_call(TID 19494, socket(SOCK_STREAM));
(* Merge Index: 2 *)
Lh_epsilon(duration 0 000015);
(* Merge Index: 3 *)
Lh_return(TID 19494, OK(FD 8));
(* Merge Index: 4 *)
Lh_epsilon(duration 0 000031);
(* Merge Index: 5 *)

RCV-SYN-WITHOUT-DATA-CLOSED-IPV4.PKT.TRACE.PDF

HOL Trace: rcv-syn-without-data-closed-ipv4.pkt.trace
[Show/hide variables and constraints.]

==Working on trace file rcv-syn-without-data-closed-ipv4.pkt.trace [plain] [ps]
 ==Date: 2017-10-16 T 17:34:34 Z (Mon)

(* Test Host: BSD(nuc) Aux Host: BSD(nuc) *)

(* Test Description 01 NONE *)

==Simplifying host and labels from disk ... done

==Step 0 at <2017-10-16 T 17:34:35 Z (Mon)> 1508175276:

 attempting time passage with duration 7 / 62500

CPU time elapsed : 3.172 seconds(unwind: 0.000)

==Successful transition of epsilon_1

==Step 1 at <2017-10-16 T 17:34:38 Z (Mon)> 1508175278:

 Lh_call (TID 19494,socket SOCK_STREAM)

initial: 0.010s (#poss: 6)

==Attempting socket_1 -- pre_host -- post_host -- phase2 -- ctxtclean

CPU time elapsed : 0.519 seconds (unwind: 0.000)

Label #calls real user system gc

==Successful transition of socket_1

==Step 2 at <2017-10-16 T 17:34:39 Z (Mon)> 1508175279:

 attempting time passage with duration 3 / 200000

CPU time elapsed : 4.227 seconds(unwind: 0.000)

==Successful transition of epsilon_1

==Step 3 at <2017-10-16 T 17:34:43 Z (Mon)> 1508175284:

 Lh_return (TID 19494,TL_err (OK (TL_fd (FD 8))))

initial: 0.010s (#poss: 2)

==Attempting return_1 -- pre_host -- post_host -- phase2 -- ctxtclean

CPU time elapsed : 0.292 seconds (unwind: 0.000)

Label #calls real user system gc

==Successful transition of return_1

==Step 4 at <2017-10-16 T 17:34:43 Z (Mon)> 1508175284:

https://netsem.nqsb.io/BOGUSPATH/rcv-syn-without-data-closed-ipv4.pkt.trace.html
https://netsem.nqsb.io/BOGUSPATH/rcv-syn-without-data-closed-ipv4.pkt.trace
https://netsem.nqsb.io/BOGUSPATH/rcv-syn-without-data-closed-ipv4.pkt.trace.ps.gz

ONGOING WORK
More tests
Validating more stacks
More features in model (congestion control, SACK)
TCP/IP implementation in OCaml
Test coverage: model and stacks

RESULTS
Roughly 3 dozen anomalies in FreeBSD implementation
(2005)

see Section 9

Slowly re-checking and �xing upstream
Revival of HOL model lead to various rule �xes
Enhanced state machine diagram

http://www.cl.cam.ac.uk/~pes20/Netsem/tr.pdf

http://www.cl.cam.ac.uk/~pes20/Netsem/tr.pdf

A8: RESPONSE TO SYN, FIN SEGMENTS.

In the SYN SENT state, it is possible to receive
a FIN along with the required SYN. In the case
of a SYN, FIN , ACK being received, BSD will
ACK both the SYN and the FIN , moving into
CLOSE_WAIT , which is perfectly reasonable
behaviour. If, however, a SYN, FIN segment is

received (a simultaneous open), BSD
incorrectly bypasses the SYN_RECEIVED

state and moves directly into CLOSE WAIT
without waiting for our SYN to be

acknowledged. See deliver_in_2,
deliver_in_3.

A10: WINDOW OF NO RTT CACHE UPDATES

After 2^32 packets, there is a 16 packet
window during which time, if the TCP

connection is closed, the RTT values will not
be cached in the routing table entry. This is

because of an over�ow/wraparound problem
in t_rttupdated. Impact: Very rarely, after

the closure of 1 in 2^28 connections, the
round-trip time estimator will be less accurate

that it might be, adversely affecting the
performance of a subsequent connection.

TCP STATE MACHINE
NONEXIST

SYN_RECEIVED

deliver_in_1
arS/ArSf

CLOSED

socket_1
/

LISTEN close_8
/

deliver_in_7b
R/

deliver_in_1b
r/Rs

shutdown_1
/

SYN_SENT

close_7
/

timer_tt_keep_1
/Arsf

timer_tt_rexmtsyn_1
/arSf

deliver_out_1
/rsF

deliver_out_1
/rsf

deliver_in_7c
R/

deliver_in_2a
r/Rs

connect_4
/

deliver_in_2
arS/ArSf

ESTABLISHED

deliver_in_2
ArS/Ars

FIN_WAIT_1

deliver_in_2
ArS/Ars

FIN_WAIT_2

deliver_in_2
ArS/Ars

CLOSE_WAIT

deliver_in_2
arS/ArSf

deliver_in_2
ArS/Ars

LAST_ACK

deliver_in_2
ArS/Ars

timer_tt_conn_est_1
/

timer_tt_rexmtsyn_1
/

deliver_in_7d
AR/

connect_4
/

close_8
/

close_7
/

timer_tt_keep_1
/Arsf

timer_tt_persist_1
/Arsf

timer_tt_rexmt_1
/ArSf

deliver_out_1
/rsF

deliver_out_1
/rsf

deliver_in_8
rS/ARs

deliver_in_3c
A/Rs

deliver_in_3
rf/di3out

deliver_in_3
rf/di3out

deliver_in_3
rf/di3out

deliver_in_3
rF/di3out

timer_tt_rexmt_1
/ARs

deliver_in_7a
R/

close_8
/ARs

timer_tt_keep_1
/Arsf

timer_tt_persist_1
/Arsf

timer_tt_rexmt_1
/Arsf

deliver_out_1
/rsf

deliver_in_8
rS/ARs

deliver_in_3
rf/di3out

timer_tt_persist_1
/ArsF

timer_tt_rexmt_1
/ArsF

deliver_out_1
/rsF

deliver_in_3
rF/di3out

timer_tt_rexmt_1
/ARs

deliver_in_7
R/

close_3
/ARs

timer_tt_keep_1
/Arsf

timer_tt_rexmt_1
/Arsf

deliver_out_1
/rsF

deliver_out_1
/rsf

deliver_in_8
rS/ARs

deliver_in_3
rf/di3out

CLOSINGdeliver_in_3
rF/di3out

deliver_in_3
rf/di3out

TIME_WAIT

deliver_in_3
rF/di3out

timer_tt_rexmt_1
/ARs

deliver_in_7
R/

deliver_in_3b
rs/Rs

close_3
/ARs

timer_tt_keep_1
/Arsf

timer_tt_rexmt_1
/Arsf

deliver_out_1
/rsF

deliver_out_1
/rsf

deliver_in_8
rS/ARs

deliver_in_3
rF/di3out

deliver_in_3
rf/di3out

deliver_in_3
rF/di3out

deliver_in_3
rf/di3out

timer_tt_rexmt_1
/ARs

deliver_in_7
R/

deliver_in_3b
rs/Rs

close_3
/ARs

timer_tt_keep_1
/Arsf

deliver_out_1
/rsf

deliver_in_8
rS/ARs

deliver_in_3
rf/di3out

deliver_in_3
rF/di3out

timer_tt_fin_wait_2_1
/

deliver_in_7
R/

deliver_in_3b
rs/Rs

close_3
/ARs

connect_1
/arSf

deliver_out_1
/rsf

deliver_in_9
rS/Rs

deliver_in_7c
R/

deliver_in_3
rF/di3out

deliver_in_3
rf/di3out

timer_tt_2msl_1
/

deliver_in_3b
rs/Rs

deliver_in_1
arS/ArSf

connect_1
/

close_3
/ARs

timer_tt_keep_1
/Arsf

timer_tt_persist_1
/Arsf

deliver_out_1
/rsf

deliver_in_8
rS/ARs

deliver_in_3
rF/di3out

deliver_in_3
rf/di3out

timer_tt_persist_1
/ArsF

deliver_out_1
/rsF

deliver_in_7
R/

close_3
/ARs

timer_tt_keep_1
/Arsf

timer_tt_rexmt_1
/Arsf

deliver_out_1
/rsF

deliver_out_1
/rsf

deliver_in_8
rS/ARs

deliver_in_3
rf/di3out

timer_tt_rexmt_1
/ARs

deliver_in_7
R/

deliver_in_3b
rs/Rs

deliver_in_3
rF/di3out
close_3
/ARs

close_7
/

listen_1
/

connect_1
/arSf

deliver_in_6
unconstrained/

connect_1
/

STEVENS STATE MACHINE
LISTEN

SYN_SENT

appl:send data
send:SYN

SYN_RECEIVED

recv:SYN
send:SYN,ACK

recv:SYN
send:SYN,ACK

simultaneous open

ESTABLISHED

recv:SYN,ACK
send:ACK

CLOSED

recv:ACK
send:<nothing>

FIN_WAIT_1

appl:close
send:FIN

timeout
send:RST

appl:close
send:FIN

CLOSE_WAIT

recv:FIN
send:ACK

CLOSING
recv:FIN

send:ACK

FIN_WAIT_2

recv:ACK
send

<nothing>

TIME_WAIT

recv:FIN,ACK
send:ACK

recv:ACK
send:<nothing>

recv:FIN
send:ACKLAST_ACK

appl:close
send:FIN

recv:ACK
send:<nothing>

appl:passive open
send:<nothing>

appl:active open
send:SYN

CONCLUSION
Formalising real-world protocols is possible, but lots of
work
Artifacts include a readable speci�cation with typesetted
transition rules
Discovered various subtle bugs
Coverage of test suite
Interested in testing your TCP stack: get instrumentation
ready!
JACM draft
http://www.cl.cam.ac.uk/~pes20/Netsem/paper3.pdf

Advertisement:

http://www.cl.cam.ac.uk/~pes20/Netsem/paper3.pdf

MirageOS retreat 7th-18th March in Marrakesh

 blog

http://retreat.mirage.io
https://mirage.io
http://robur.io https://hannes.nqsb.io

http://retreat.mirage.io/
https://mirage.io/
http://robur.io/
https://hannes.nqsb.io/

