ENGINEERING TCP/IP WITH LOGIC

Hannes Mehnert® robur.io, @h4nnes

based on work by Peter Sewell*, Michael Norrish”, Tom Ridge*
earlier contributors are Steve Bishop*, Matthew Fairbairn®, Michael Smith*, and Keith Wansbrough*
*while at University of Cambridge, NICTA

Bob 2018, 23th February 2018

http://robur.io/
https://twitter.com/h4nnes

ABOUT ME

Programmer (Turbo Pascal, C, Perl, Haskell, Dylan, Visual
Basic, Python, C++, Java, Scala, Common Lisp, Coq, ldris,
Emacs Lisp, JavaScript, Agda, OCaml)

FreeBSD since 4.5 (2002), some Linux

PhD in mechanised verification of the correctness of Java
programs (using separation logic) at ITU Copenhagen
PostDoc at University of Cambridge with Peter Sewell
MirageOS (see Bob 2015 keynote) core team member
Since 2018 non-profit robur.io to put MirageOS into
production

Looking for funding and contracts!

NETWORK PROGRAMMING

Variety of protocols (IP, ICMP,UDP, TCP etc)

Features: concurrency, packet loss, host failure, timeouts
Sockets API

Described in RFCs using informal prose and pseudocode
Ambiguous and incomplete descriptions

Protocols are hard to design and implement correctly
Testing conformance against the standards is challenging
Many obscure corner cases and failure semantics requires
considerable expertise

TGP/IP

0SI Model TCPSIP
Layers Protocol TCP/IF Protocol
Architecture Suite
Layers
application application
Layer Layer
Presentation Telnet[FTP|smTR| [oME||RIP [lhmMp
Layer =l
Session
Layer
Host-to-Host
Transpart
Carer Transport TCP LDP
Layer
Metworl Internet P |IGMF’ ICMP
Layer Layer LEP
Data-Link "
Layer Metwork Token | [Frame
; Interface Ethernet Ring Relay ATH
Physical Layer

Layer

WHAT IS TCP/IP?

Main protocol suite used for the Internet

Internet Protocol (IP) RFC 760, Jan 80 - later RFC 791, Sep

81

= connectionless, best-effort for packet-switched
networks

Internet Control Message Protocol (ICMP) RFC 792, Sep

81

® error messages and organisational information

User Datagram Protocol (UDP) RFC 768, Aug 80

= connectionless, unreliable, integrity for messages

Transmission Control Protocol (TCP) RFC 793, Sep 81

m roalinhle Aardearad arrar-chaeclczad Aaliviaryr af it ctraamec

T I CIIANVILVy VI UG WUy LIHTUVIE CITVCOUINGCU UGl vV ol y Ul Lly Lo LI AIIT19

WHAT IS TCP?

Sockets API: socket, bind, listen, accept, listen, connect,
send, receive, shutdown, close

Segments transmitted via Ethernet

Connection setup and teardown

Retransmission of lost segments

Window size controls congestion

Window is negotiated continuously

TCP STATE MACHINE

yd “recv:FIN
/" send:ACK

/

‘f"applzclose
\send:FIN

\

\

appl:send data
send:SYN

recv:SYN

send:SYN,ACK
simultaneous open

| recv:SYN
\s\end:SYN,ACK

ecv:SYN,ACK
send:ACK

ESTABLISHED

appl:close
send:FIN

FIN_WAIT 1

ecv:ACK
send
<nothing>

recv:FIN

" recv:ACK
send:<nothing;

appl:active open

recv:FIN,ACK
send:ACK

recv:FIN
send:ACK

recv:ACK
send: <nothin;

FIN_WAIT_2

send:

g>

|

d

ppl:close
end:FIN

timeout
end:RST

4

ppl:passive open
send:<nothing>

recv:ACK
___send:<nothing>

IMPLEMENTATION ISSUES

"Mystery of hanging S3 downloads", "The many ways of
handling TCP RST packets" https://www.snellman.net/blog
Complex: described in dozens RFCs, complex state
machine

Extensible: TCP selective acknowledgement, TCP fast
open, |IPvé

Security: everywhere

Congestion control: loss vs delay, more bandwidth, shared
medium (3G, wireless)

Testing: huge test space (1200 bit TCP state + 190 bit per
segment), try deployed stacks on the Internet

https://www.snellman.net/blog

WHAT IS A BUG IN TCP/IP?

May manifest as error in connection setup or teardown
Or just introducing higher delay or less bandwidth (small
windows)

Interoperability with deployed stacks is crucial! Even if an
RFCis violated

Security: amplification, off-the-path attackers (blind
window, LAND), DoS, common implementation pitfalls

FORMAL METHODS T0 THE RESCUE

Clear, accessible to a broad community and easy to modify
Unambiguous, characterising exactly what behaviour is
specified

Sufficiently loose, characterising exactly what is not
specified

Directly usable as a basis for conformance testing
Validated by getting used as a test oracle

HISTORY OF NETWORK SEMANTICS

e Started as research project at University of Cambridge in
2000 (FreeBSD 4.6, Linux 2.4, ~9kloc HOL and 17kloc
comments)

e UDP Calculus: Rigorous Semantics for Real Networking
(TACS 2001)

e Rigorous specification and conformance testing techniques
for network protocols, as applied to TCP, UDP, and Sockets
(SIGCOMM 2005)

e Engineering with Logic: HOL Specification and Symbolic-
Evaluation Testing for TCP Implementations (POPL 2006)

e Arigorous approach to networking: TCP, from
implementation to protocol to service (FM 2008)

e Engineering with Logic: Rigorous Test-Oracle Specification

dliu vdliudLIiVUII 1Vl 1\or/71ir diiu L OUCLRKCLS Ari \JAviIviulidliL

Nov 2017)

e 11 person years of work, 386 pages specification
e Revivalin 2016 with help from Michael Norrish

MODEL

Developed in HOL4

| abel transition system

Host state and label to new state

| abel: duration, segment send or received, state change
nternal tau-transitions: arriving packet is not processed
immediately, but put into queue

Configuration parameters (sequence number, ..) via
existentially quantified variables

SML executable with backtracking to validate traces

EXAMPLE RULE: BIND _o

bind_5 all: fast fail Fail with EINVAL: the socket is already bound to an address and does not
support rebinding; or socket has been shutdown for writing on FreeBSD

h {ts:=ts (tid — (RUN))]
tid-bind (fd, is,. ps,)

h (tsi=ts & (tid — (RET(FAIL EINVAL)), 3 4 ime)]

1. fd € domlh fds) »

2. fid = h.fds[fd] »

3. h.files[fid] = FILE(FT_SOCKET(sid), ff} &
4. h.socks[sid] = sock A

5. (sock.ps) # =V

6. (bsd_arch h.arch A sock. pr = TCP_PROTO tep_sock) A

(sock.cantsndmore W

tep_sock b bsd_cantconnect)))

| |
Description From thread tid, which is in the RUN state, a bind (fd. is;. ps;) call is made where fd
refers to a socket sock. The socket already has a local port binding: sock.ps; # = and rebinding is
not supported.

A tid-bind (fd. is,. ps,) ransition is made. leaving the thread state RET(FAIL EINVAL).

e

Variations

FreeBSD This rule also applies if fd refers 1o a TCP socket which is either shut down
for writing or has its bsd_cantconnect flag set.

WHAT IS A TEST?

e Tthee autotest implemented in OCaml, ad-hoc, large rule
coverage

e Now using packetdrill (2013), which does expect-based
testing

RCV-SYN-WITHOUT-DATA-CLOSED-IPV4.PKT

socket(..., SOCK_STREAM, IPPROTO_TCP) = 3
setsockopt (3, SOL_SOCKET, SO_DEBUG, [1], 4) = 0
bind(3, ..., ...) =0

getsockopt (3, SOL_SOCKET, SO_RCVBUF, [65536], [4]) = ©

< S 17:17(0) win 32767
> R. 0:0(0) ack 18 win 0O
close(3) = 0

WHAT IS A TRACE?

e Series of POSIX system calls or TCP fragments
e Possible injection of TCP fragments from remote host
e DTrace instrumenatation outputs a trace:

= Durationinms

= Socket calls

s TCP segments on wire

= TCP control block structure

HOLTCP.D (700 LINES)

#define act execname == "packetdrill" && self->started == 1

int ts;
int step;

#define dur()
this->dur = timestamp - ts ;
this->us this->dur / 1000;

this->s = this->us / 1000000;

this->us = this->us % 1000000;

ts = timestamp ;

printf("(* Merge Index: %d *)\n", step); \

step = step + 1 ; \
printf("Lh_epsilon(duration %d %06d);\n", this->s, this->us); \
printf("(* Merge Index: %d *)\n", step); \

step = step + 1 ;

RCV-SYN-WITHOUT-DATA-CLOSED-1PV4.PKT.TRACE

(* HOST *)
initial_host (IP 192 168 0 1) (TID 19494) (FreeBSD_4_6_RELEASE) F [(NONE
* *
(* TSOH *)
(* BEGIN *)
(* BASETIME *)
abstime 1493299013 650354405
(* EMITESAB *)
(* Merge Index: 0 *)
Lh_epsilon(duration 0 000112),
(* Merge Index: 1 *)
Lh_call(TID 19494, socket(SOCK_STREAM));
(* Merge Index: 2 *)
Lh_epsilon(duration 0 000015);
(* Merge Index: 3 *)
Lh_return(TID 19494, OK(FD 8));
(* Merge Index: 4 *)
Lh_epsilon(duration 0 000031);
. *

RCV-SYN-WITHOUT-DATA-CLOSED-IPV4.PKT.TRACE.PDF

Test Hest: BS DI:t]I.h::l Aux Host: BHDI:HLH::I

Test Description 01 NONE
rev-syvn-without-data-clesed-ipvd pkt. trace

+0.000112s (#1)

socket(SOCK_STREAM) ?

+0.000127= (#3)
OK(FD 8)

+0.000158: (#5) |
bind(FD 8, SOME(IP 192 16§
0 1), SOME(Port 8080))

rl = | Action: TALUSER —— CLOSED
-'_“1]]”1 {1;"' I:#‘." . terttang =%, ta_racant =Closasd

+0.0001%3 (#0)
OK{()

TCP 1T (0: 1)
— wi‘n =

Action: TA_OGUTFUT —— CLOEED

+0. 100252 r#lﬂ L terttang =", taracant =Clossd

_qg76T mes="

+0.100230s (#11)

+0.100273= (#15)

+0. 100390 (#17)
close(FID 8)

+0.100402s (F19)

+0.100422s (#21)
OK()

F___A_ TCP). 1& (.

'll'l-'i".—_- il 1 -:I A

Action: TAUSER —— CLOEED
brttesg=" te_recont=Clossd
.

HOL Trace: rcv-syn-without-data-closed-ipv4.pkt.trace

[Show/hide variables and constraints.]

==Working on trace file rcv-syn-without-data-closed-ipv4.pkt.trace [plain] [ps]
==Date: 2017-10-16 T 17:34:34 Z (Mon)

(* Test Host: BSD(nuc) Aux Host: BSD(nuc) *)
(* Test Description 01 NONE *)

==Simplifying host and labels from disk ... done

==Step 0 at <2017-10-16 T 17:34:35 Z (Mon)> 1508175276:
attempting time passage with duration 7 / 62500
CPU time elapsed : 3.172 seconds(unwind: 0.000)

==Successful transition of epsilon_1

==Step 1 at <2017-10-16 T 17:34:38 Z (Mon)> 1508175278:
Lh call (TID 19494,socket SOCK STREAM)
initial: 0.010s (#poss: 6)
==Attempting socket 1 -- pre host -- post host -- phase2 -- ctxtclean
CPU time elapsed : 0.519 seconds (unwind: 0.000)
Label #calls real user system gc

==Successful transition of socket_1

==Step 2 at <2017-10-16 T 17:34:39 Z (Mon)> 1508175279:
attempting time passage with duration 3 / 200000
CPU time elapsed : 4.227 seconds(unwind: 0.000)

==Successful transition of epsilon_1

==Step 3 at <2017-10-16 T 17:34:43 Z (Mon)> 1508175284:
Lh return (TID 19494,TL err (OK (TL fd (FD 8))))
initial: 0.010s (#poss: 2)
==Attempting return 1 -- pre host -- post host -- phase2 -- ctxtclean
CPU time elapsed : 0.292 seconds (unwind: 0.000)
Label #calls real user system gc

==Successful transition of return_1

==Step 4 at <2017-10-16 T 17:34:43 Z (Mon)> 1508175284:

https://netsem.nqsb.io/BOGUSPATH/rcv-syn-without-data-closed-ipv4.pkt.trace.html
https://netsem.nqsb.io/BOGUSPATH/rcv-syn-without-data-closed-ipv4.pkt.trace
https://netsem.nqsb.io/BOGUSPATH/rcv-syn-without-data-closed-ipv4.pkt.trace.ps.gz

ONGOING WORK

More tests

Validating more stacks

More features in model (congestion control, SACK)
TCP/IP implementation in OCaml

Test coverage: model and stacks

RESULTS

e Roughly 3 dozen anomalies in FreeBSD implementation
(2005)
= see Section 9
http://www.cl.cam.ac.uk/~pes20/Netsem/tr.pdf
e Slowly re-checking and fixing upstream
e Revival of HOL model lead to various rule fixes
e Enhanced state machine diagram

http://www.cl.cam.ac.uk/~pes20/Netsem/tr.pdf

A8: RESPONSE T0 SYN, FIN SEGMENTS.

In the SYN SENT state, it is possible to receive

a FIN along with the required SYN. In the case
ofaSYN, FIN,ACK being received, BSD will

ACK both the SYN and the FIN , moving into
CLOSE WAIT, which is perfectly reasonable
behaviour. If, however,a SYN, FIN segment is

received (a simultaneous open), BSD
incorrectly bypasses the SYN RECEIVED

state and moves directly into CLOSE WAIT
without waiting for our SYN to be
acknowledged. Seedeliver in 2,
deliver 1in 3.

A10: WINDOW OF NO RTT CACHE UPDATES

After 2”32 packets, there is a 16 packet
window during which time, if the TCP
connection is closed, the RTT values will not
be cached in the routing table entry. This is
because of an overflow/wraparound problem
int rttupdated. Impact: Very rarely, after
the closure of 1in 2”28 connections, the
round-trip time estimator will be less accurate
that it might be, adversely affecting the
performance of a subsequent connection.

TCP STATE MACHINE

NONEXIST

lose_ 8
delverin_1
o 7| arsiAust

i beep_1
At A
et persist_|

i 1 sexmt_ 1

SYN_RECEIVED -

delverin 20

ot E

4 S daiver in 2 iver in 3 N
A widiou
timer 1 keep.1
Anf
| aeliver in 2
felivr in_2 SIS feliver in 3 deliver in 3
AS/Ar | delvecinz o idisou
A
o7 ocket
7
eivr in 2 S— deljer in 3 deliver in 3\ deliver in 2
AS/AS st isout eEdisou Arsiar

mer 1 _comn_es 1

e sevmsyn_ 1 | e et
| s

deliverin 74 Jarst delver 70
AR w

comect s

\
timer 1 keep 1

e ke |
imer x|

timer_t_persis_1

R CLOSING)+ CLOSE_WAIT =

deliver_ou_T) st deliver_in 8

24 st deliver_in 8 = IS/ARS
:

imer_t_sexmi_t ime_t_sexm
s
deliver in 7 | detverin 7 delver in7
®
delverin_3b dose 3
s \ TR

imer_t_keep_1
st

et bee. 1] et e 1
ot denerins At
ot e o3 N s
e E et n7c h
) wn)) dtver ot
AR et in 3 | 5
dan 3 Fldon wieins
i ddivern'a SR
i \ s/

\

tmer_ 2msly foer_t_rexm_1
AR

mer_t_fn_wat_2_1
delver o

deliverin_3b
delver in 7 e

/
et \ [e in 30

devecin 30 s/t | s -~ —
s comect 1 deivein3

o

cose 3
AR

close 3
TARs

e 3
ARS

STEVENS STATE MACHINE

appl:send data

| recv:SYN
\s\end:SYN,ACK

send:SYN
recv:SYN o
send:SYN,ACK
simultaneous open
—

ecv:SYN,ACK
send:ACK ”

ESTABLISHED

yd “recv:FIN
/" send:ACK

appl:close
send:FIN

recv:FIN

" recv:ACK
send:<nothing;

appl:active open

FIN_WAIT 1

/

‘f"applzclose ECV:‘AECK recv:FIN,ACK
\send:FIN sen send:ACK
\ <nothing>

\

\

recv:FIN
send:ACK

recv:ACK
send: <nothin;

FIN_WAIT_2

recv:ACK
___send:<nothing>

send:

g>

|

d

ppl:close
end:FIN

timeout
end:RST

4

ppl:passive open
send:<nothing>

CONCLUSION

Formalising real-world protocols is possible, but lots of
work

Artifacts include a readable specification with typesetted
transition rules

Discovered various subtle bugs

Coverage of test suite

Interested in testing your TCP stack: get instrumentation
ready!

JACM draft
http://www.cl.cam.ac.uk/~pes20/Netsem/paper3.pdf

Advertisement:

http://www.cl.cam.ac.uk/~pes20/Netsem/paper3.pdf

e MirageOS retreat 7th-18th March in Marrakesh
Nttp://retreat.mirage.io

e https://mirage.io
o http://robur.io blog https://hannes.ngsb.io

http://retreat.mirage.io/
https://mirage.io/
http://robur.io/
https://hannes.nqsb.io/

