Configuration with Model-Based Dependencies

— an experience report —

Gabor Greif
mailto:gabor.greif@alcatel-lucent.com

BOBkonf 2015
January 23

About me

With Alcatel-Lucent since 2000

Currently (also) working on Safe and Secure European Routing (,,SASER®),
a BMBF-funded project

Coaching Bachelor Student: Philip Ottinger

The context we assume for this talk

Our setting is
* Embedded devices

* Haskell: no mutation, expressive types

Show of hands
* Experience with Haskell? Monads?
* GADTs?
* Proofs?

* Chemistry?

Agenda

2. How to ensure correct effect ordering

I. How to use gdiff for computing effectful actions gdiff is a Haskell library
for comparing values

Part One

How to obtain configuration actions

by
comparing trees

W 7
SAN

We are building these (1830 PSS)

But | shall explain things in terms of this familiar device

S
S

@ 101.75 O @

Configuration tree

Receiver

gdiff: a fundamental utility

Like the well-known UNIX® programs diff and patch

Lempsink and Loh, 2010
Generalized to arbitrary algebraic datatypes
Formally verified in Agda, library ported to Haskell

Comeparing two trees of the same type (old vs. new)
diff:a— a— EditScript,__aa
t "diff t_ . =A
n n+l

Simplest example:
A> let delta =False “diff" True
© Ins True $ Del False $ End False

Applying edit script to a previous value
patch::EditScript, aa-—a-—a
A "patch™ t_=t

n n+l

Example:
A>delta “patch” False

& True patch™ False

Designed to work on pure Haskell values (e.g. ADTs, tree-like data)

‘difft | True| =

True

How it works (in a nutshell)

diff needs a view to nodes (locally), so the programmer
is in charge of supplying following infrastructure:

* Family GADT categorises all nodes occurring in tree (data Fam)

* Each occurring type mapped to a subset of these by (class Type,__)

* class Family mediates:
* decEq compares node categories

returning proofs that the node types match

» fields returns a heterogeneous list of subtrees of a node
effectively exposing the node structure to recursive invocations

* apply creates a new tree, given a node descriptor and subtrees

apply Pair' { }

for use by patch

::Bool

zInt

data Fam :: % = % — % where

False' :: Fam Bool {}
True' :: Fam Bool {}

instance Type Fam Bool where
constructors = [False', True']

(- :
instance Family Fam where

_ decEq’ _ = Nothing

fields False' False = Just {}
fields True' True = Just {}
fields _ _ = Nothing

~

False' "decEq” False' = Just (Refl, Refl)
True' "decEq’ True' = Just (Refl, Refl)

We added

* polymorphic containers, e.g. Type, a= Type_, [a]
e ...other features, described later

Encountered problems

* diff moves subtrees around, e.g.
A> (True, False) “diff> (False, True)
© Ins True $ Cpy False $ Del True $.. $ End

Same thing happens with textual diff:
#8-_-= see github

While this is an intentional optimization, it leads to unphysical moves

When hardware-related configuration parameters change, we always require
Insv , $Delv §..
in edit scripts, corresponding to APIs

(True, False)
“diff’
(False, True)

We added (cont'd)

* polymorphic containers, e.g. Type a = Type [a]
* Locations added to data types to pin them

Bool becomes Bool,
e ...other features, described later

Locations for our radio device

on the type level
data Loc
= Receiver
| Amplifier Loc
| Tuner Loc
| Pod Loc
| Alarm Loc
describe paths to nodes

Volume setting of the iPod earphones is then
FloatAmplifier (Pod Receiver)

Loudness of the speakers
Float

Amplifier Receiver

We use datatype promotion
to obtain a Loc kind:
{-# LANGUAGE DataKinds #-}

Float

‘Amplifier Receiver

Located Float (Amplifier Receiver)

At this point

We can create (pure) edit scripts without unphysical movements
EditScript _ Configtree Configtree

But we would like patch to have an effectful (i.e. monadic) result:
I0 Configtree
with potentially non-trivial actions included

For this (deducing backwards) our scripts must have following type:
EditScript (IO Configtree) (IO Configtree)

So diff must also be called with IO Configtree

:: Configtree — 10 ()
loop conf = do
conf ¢ runUl conf
let delta =@confn‘diff“@confn+|
patch delta (@confn)

loop conf |

|dea: diff of pure actions

for example
N N ure
t pure Iot unsafePerformIO t (\% P
is the identity) «— "

extract

(fortunately many monads/applicatives like this with disciplined extraction exist)

All we need to do is to wrap existing Fam GADT descriptors:
Wrap:: Fam t sub, — Fam (IO t) (Map IO sub,)

fields (Wrap desc) action
=wrapIO (fields desc $ extract action)

At this point we have

patch::EditScript (IO Configtree) (IO Configtree) —

IO Configtree — IO Configtree

Locations permit specialization of actions created:
Float — setTunerFrequency
Tuner ..

FloatAmplifier —> setVolume

apply (Wrap Amp)

1O Facility .
Amplifier
setVolume 11 |:l1O Float Amplfier
xtraBass True [:1O Bool

Amplifier

Departing from the IO monad

IO actions are too restricted for our purposes

Generalization to Monad m = m Configtree is straightforward, and permits, e.g.
* tracing of execution
* timing measurements
* mobile code
* visualization
* property-based testing (e.g. QuickCheck)

For the rest of the talk we assume a Bag implementation, that supports
* injection of Pure values
* parallelism of actions (Par)
* sequencing, essentially a monadic (>>)
* a range of primitive actions (e.g. SetVolume, etc.)

SetVolumeAmpl 1]

|XtraBassmmTrue

Part Two

A sequencing problem
and
the molecular analogy

(ongoing work)

w

/i}csy spider| *

. / *)
Lbltsy -

Configuration by remote commands (CLI)
Running example is this command
S set-alarm -time Now —-active Off

This should be interpreted as one transaction
Hardware should be updated on commit

The non-obvious problem: effect ordering matters

Let's assume the alarm clock is switched on

The CLI command
S set-alarm -time Now —-active Off
when implemented naively (e.g. by performing actions as written)

may cause a transient beep!

Fixed reordering does not help,
example:
$ set-alarm -activeOn -time 6:45

We have to deal with context-dependency! a

Caveat: hardware cannot be updated atomically

Atomic actions

Actions coming out of a leaf diff are considered atomic: ' =24
Atomic — The name comes from the Greek &TOMOG (,,indivisible*) apply (Wrap True Amp) {= @
(e.g. our primitives SetVolume, etc.)

— VS. —

Compound actions

at each structured node its sub-actions are absorbed by a bag, so they become
inherently parallel

We intend to exploit dependencies for sequencing
Embarrassing parallelism needs to be controlled

Xtr é True
apply (Wrap Amp) { %

Setvplume, 11

{etvolune,) 11
. 4

Where dependencies arise

Dependencies are dictated by the hardware

AN
Configuring enclosing units before its parts p
Dually, reversed order for controlled removal O\ w
" . I NE°F
Other model-specific dependencies, such as: 1 555
* suppressing transients |

* modelling resources: buses, CPU cores /\

selectSong, , "Yesterday"

powerOn, .,

A DSL for stating dependencies

make is a decent language for describing dependencies

We'll add rules to our Bags

but these serve to only model ordering

Our rules are written in terms of (abstract) locations
and strongly resemble Haskell function signatures

*Time (Alarm..) - Switch (Just True) (Alarm..) - Switch Nothing (Alarm...)
* Switch (Just False) (Alarm..) - Time (Alarm..) - Switch Nothing (Alarm...)

In symbols:

Vs

—o XL —o

[%.c.o: %.c

gcec $< -0 $@

)

How rules consume inputs

Rule evaluation is reminiscent of organic chemistry:
* rules can be seen as catalysts (enzymes), which bind atoms to obtain sequenced molecules
* partially saturated molecules are the other active substances
* reactions in Bags run until a fixpoint is reached

(N.B.: In informatics this is also called the linear lambda calculus)

Binding
* requires a proof that locations match

* changes — to »

Image credit: Wikipedia.org

Responsibilities

The author of the rules needs to ensure that the rules
|. are terminating
2. and confluent

Our evaluator takes care of linearity

The molecular analogy

In summary, we can establish the following correspondence
between Bag constructors and chemical substances

* Pure: (irrelevant)

* ActivateAlarm, etc.: atoms
* (>>), sequencing: molecules (compounds) Setvolume,
* Rule: catalysts
* Par: free substances, unordered in reaction container XtraBass, True

Conclusions

We sketched a declarative way to model
the profoundly effectful domain of HW configuration, by

* teaching gdiff to handle effectful actions
* starting out with maximal parallelism, and describing dependencies with a DSL
* obtaining strong guarantees by requiring proofs for type equalities

Thanks for listening!

Questions?

Trademarks:
UNIX is a registered trademark of The Open Group
iPod is a trademark of Apple Inc., registered in the U.S. and other countries

Image credits:
Wikipedia.org

Funding:
This work has been funded in parts by the German Ministry for Research and Education (BMBF grant ,,SASER")

Bundesministerium

Alcatel-Lucent @ Rl R

Backup Slides

Fixpoint reaction
with
a rule

Fixpoint reaction: start

Fixpoint reaction: bind first

Fixpoint reaction: bind second

