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Introduction

» Haskell: a statically typed, lazy, purely functional language
» Modelling musical harmony using Haskell
» Applications of a model of harmony:

> Musical analysis

» Finding cover songs

» Generating chords and melodies

» Correcting errors in chord extraction from audio sources
Chordify—a web-based music player with chord recognition

v
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Demo: Chordify

Demo:

crordity”

http://chordify.net
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What is harmony?

v

Harmony arises when at least two notes sound at the same time

» Harmony induces tension and release patterns, that can be described
by music theory and music cognition

» The internal structure of the chord has a large influence on the
consonance or dissonance of a chord

» The surrounding context also has a large influence
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What is harmony?

» Harmony arises when at least two notes sound at the same time

» Harmony induces tension and release patterns, that can be described
by music theory and music cognition

» The internal structure of the chord has a large influence on the
consonance or dissonance of a chord

» The surrounding context also has a large influence

Demo: how harmony affects melody
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An example harmonic analysis

Piece
PIT PID PIT

T D T
I T I

| S D |

I I I I

C \Y) V/V C

| /\

José Pedro Magalh3es Advanced Functional Programming in Industry, BOB 2015



Why are harmony models useful?

Having a model for musical harmony allows us to automatically
determine the functional meaning of chords in the tonal context.
The model determines which chords “fit" on a particular moment in a

song.
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Why are harmony models useful?

Having a model for musical harmony allows us to automatically
determine the functional meaning of chords in the tonal context.
The model determines which chords “fit" on a particular moment in a
song. This is useful for:
» Musical information retrieval (find songs similar to a given song)
» Audio and score recognition (improving recognition by knowing
which chords are more likely to appear)
» Mousic generation (create sequences of chords that conform to the
model)
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Why Haskell?

Haskell is a strongly-typed pure functional programming language:

Strongly-typed All values are classified by their type, and types are
known at compile time (statically). This gives us strong
guarantees about our code, avoiding many common
mistakes.

Pure There are no side-effects, so Haskell functions are like
mathematical functions.
Functional A Haskell program is an expression, not a sequence of
statements. Functions are first class citizens, and explicit
state is avoided.
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Notes

data Root =A|B|C|D|E|F|G
type Octave = Int
data Note = Note Root Octave
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Notes

data Root =A|B|C|D|E|F|G
type Octave = Int
data Note = Note Root Octave

a4 b4 c4 d4,ed,f4, g4 - Note

a4 = Note A 4
b4 = Note B 4
c4 = Note C 4
d4 = Note D 4
e4 = Note E 4
f4 = Note F 4

g4 = Note G 4
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Melody

type Melody = [Note]

cMajScale :: Melody
cMajScale = [c4,d4, ed, f4, g4, a4, ba]
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Melody

type Melody = [Note]

cMajScale :: Melody
cMajScale = [c4,d4, ed, f4, g4, a4, ba]

cMajScaleRev :: Melody
cMajScaleRev = reverse cMajScale
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Melody

type Melody = [Note]

cMajScale :: Melody
cMajScale = [c4,d4, ed, f4, g4, a4, ba]

cMajScaleRev :: Melody
cMajScaleRev = reverse cMajScale

reverse :: [a] — []

reverse || =]

reverse (h : t) = reverse t 4 [h]
() = [o] = [o] = [«]
(#)=...
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Transposition

Transposing a melody one octave higher:

octaveUp :: Octave — Octave
octaveUpn=n+1

noteOctaveUp :: Note — Note

noteOctaveUp (Note r o) = Note r (octaveUp o)
melodyOctaveUp :: Melody — Melody
melodyOctaveUp m = map noteOctaveUp m
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Generation, analysis

Building a repeated melodic phrase:

ostinato :: Melody — Melody
ostinato m = m H ostinato m
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Generation, analysis

Building a repeated melodic phrase:

ostinato :: Melody — Melody
ostinato m = m H ostinato m

Is a given melody in C major?

root :: Note — Root

root (Notero) =r

isCMaj :: Melody — Bool

isCMaj = all (€ cMajScale) o map root
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“Details” left out

We have seen only a glimpse of music representation in Haskell.
» Rhythm
» Accidentals
> Intervals
» Voicing

> ..

A good pedagogical reference on using Haskell to represent music:
http://di.uminho.pt/~jno/html/ipm-1011.html

A serious library for music manipulation:
http://www.haskell.org/haskellwiki/Haskore
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Application: harmony analysis

Parsing the sequence Gy C7 Guin C7 Fypj D7 G7 Cpaj:

Piece
PID PIT
: T
//\
S D |
V/IV v S D C:maj
V/I I”  ins V/IV v V/V \V&
| — | [ I
Vmin C:7 V/I I|7 F:maj |||7 G:7
| [
G:min Viin  C:7 D:7
|
G:min
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Application: harmonic similarity

v

A practical application of a harmony model is to estimate harmonic
similarity between songs

» The more similar the trees, the more similar the harmony

» We don't want to write a diff algorithm for our complicated model,
we get it automatically by using a generic diff

» The generic diff is a type-safe tree-diff algorithm, part of a student'’s
MSc work at Utrecht University

» Generic, thus working for any model, and independent of changes to
the model
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Application: automatic harmonisation of melodies

Another practical application of a harmony model is to help selecting
good harmonisations (chord sequences) for a given melody:

N

Gtt—— 2 ———

3

5‘:'ala 17 A 1/ P
¢ 12 ¢ 1772 itg 2§
vV III I III II IV III IV \Y4

We generate candidate chord sequences, parse them with the harmony
model, and select the one with the least errors.
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Visualising harmonic structure

Piece
Phr|ase
Ton Dom Ton
l: I\l/laj Sub/\Dom I: I\l/laj
| T — T |

C: Maj III:{\/Iin IV: Maj II:Dlom7 V: Dlom7 C: Maj
|
E:Min  F:Maj D:Dom’ G:Dom/’

You can see this tree as having been produced by taking the chords in
green as input. ..
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Generating harmonic structure

Piece
Phr|ase
Ton Dom Ton
l: I\l/laj Sub/\Dom I: I\l/laj
| T — T |

C: Maj III:{\/Iin IV: Maj II:Dlom7 V: Dlom7 C: Maj
|
E:Min  F:Maj D:Dom’ G:Dom/’

You can see this tree as having been produced by taking the chords in
green as input. .. or the chords might have been dictated by the structure!
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A functional model of harmony

Piecegn — [Phrasegy] ("M € {Maj,Min})
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A functional model of harmony

Piecegn — [Phrasegy] ("M € {Maj,Min})

Phrasegy — Tongy Domgy Tongy
| Domgy Tongy

José Pedro Magalh3es Advanced Functional Programming in Industry, BOB 2015



A functional model of harmony

Piecegn — [Phrasegy] ("M € {Maj,Min})

Phrasegy — Tongy Domgy Tongy
| Domgy Tongy

TOﬂMaJ' — IMaj
TonM;n — Imin
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A functional model of harmony

Piecegn — [Phrasegy] ("M € {Maj,Min})

Phrasegy — Tongy Domgy Tongy
| Domgy Tongy

TOﬂMaJ' — IMaj
TonMin — Imin

Domgy — Vz7m
| Subgm Domgm
| 1y Vi
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A functional model of harmony

Piecegn — [Phrasegy] ("M € {Maj,Min})

Phrasegy — Tongy Domgy Tongy
| Domgy Tongy

TOﬂMaJ' — IMaj

m
Tonmin = e Submaj = i,

| IVMaj
| Subgy Domgy Submin — IV

| 1V
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A functional model of harmony

Piecegn — [Phrasegy] ("M € {Maj,Min})

Phrasegy — Tongy Domgy Tongy
| Domgy Tongy

TOﬂMaJ' — IMaj

m
Tonmin = e Submaj = i,

| IVMaj
| Subgy Domgy Submin — IV

| 1V

Simple, but enough for now, and easy to extend.
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Now in Haskell—I

A naive datatype encoding musical harmony:
data Piece = Piece [ Phrase |

data Phrase where
Phrasepy :: Ton — Dom — Ton — Phrase
Phrasey; :: Dom — Ton — Phrase
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Now in Haskell—I

A naive datatype encoding musical harmony:
data Piece = Piece [ Phrase |

data Phrase where
Phrasepy :: Ton — Dom — Ton — Phrase
Phrasey; :: Dom — Ton — Phrase

data Ton where
Tonp;j :: Degree — Ton
Tonpin, @2 Degree — Ton
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Now in Haskell—I

A naive datatype encoding musical harmony:
data Piece = Piece [ Phrase |

data Phrase where
Phrasepy :: Ton = Dom — Ton — Phrase
Phrasey; :: Dom — Ton — Phrase

data Ton where
Tonp;j :: Degree — Ton
Tonpin, @2 Degree — Ton

data Dom where
Domys :: Degree — Dom
Domyy_vy :: SDom — Dom — Dom
Domy_y :: Degree — Degree — Dom

José Pedro Magalh3es Advanced Functional Programming in Industry, BOB 2015



Now in Haskell—I

A naive datatype encoding musical harmony:
data Piece = Piece [ Phrase |

data Phrase where
Phrasepy :: Ton = Dom — Ton — Phrase
Phrasey; :: Dom — Ton — Phrase

data Ton where
Tonp;j :: Degree — Ton
Tonpin, @2 Degree — Ton

data Dom where
Domys :: Degree — Dom
Domyy_vy :: SDom — Dom — Dom
Domy_y :: Degree — Degree — Dom

data Degree =1 | Il | Ill...
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Now in Haskell—II

A GADT encoding musical harmony:
data Mode = l\/IajMode | l\/IinMode

data Piece (1. :: Mode) where
Piece :: [ Phrase ;1] — Piece p
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Now in Haskell—II

A GADT encoding musical harmony:

data Mode = I\/IajMOde | I\/IinMode
data Piece (1. :: Mode) where
Piece :: [ Phrase 1] — Piece u

data Phrase (11 :: Mode) where
Phraseyy :: Ton o — Dom po — Ton g — Phrase

Phrasey, :: Dom 1 — Ton pw — Phrase p
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Now in Haskell—II

A GADT encoding musical harmony:

data Mode = Majmode | Minmode

data Piece (1. :: Mode) where
Piece :: [ Phrase 1] — Piece u

data Phrase (11 :: Mode) where
Phraseyy :: Ton o — Dom po — Ton g — Phrase
Phrasey, :: Dom 1 — Ton pw — Phrase p

data Ton (p :: Mode) where
Tonpaj :: SD | Maj — Ton Majmode
Tonwin :: SD | Min — Ton Minpede
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Now in Haskell—II

A GADT encoding musical harmony:

data Mode = Majmode | Minmode

data Piece (1. :: Mode) where
Piece :: [ Phrase 1] — Piece u

data Phrase (11 :: Mode) where
Phraseyy :: Ton o — Dom po — Ton g — Phrase
Phrasey, :: Dom 1 — Ton pw — Phrase p

data Ton (p :: Mode) where
Tonpaj :: SD | Maj — Ton Majmode
Tonwin :: SD | Min — Ton Minpede

data Dom (1« :: Mode) where
Domyz ::SDV Dom’ — Dom
Domy_v :: SDom p — Dom p — Dom p
Domy_y :SD Il Dom” — SD V Dom” — Dom p
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Now in Haskell—IIl

Scale degrees are the leaves of our hierarchical structure:
data DiatonicDegree = | [ Il | Il | IV |V | VI | VII
data Quality = Maj | Min | Dom’ | Dim

data SD (¢ :: DiatonicDegree) (7 :: Quality) where
SurfaceChord :: ChordDegree — SD § 4
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Now in Haskell—IIl

Scale degrees are the leaves of our hierarchical structure:
data DiatonicDegree = | [ Il | Il | IV |V | VI | VII
data Quality = Maj | Min | Dom’ | Dim

data SD (¢ :: DiatonicDegree) (7 :: Quality) where
SurfaceChord :: ChordDegree — SD § 4

Now everything is properly indexed, and our GADT is effectively
constrained to allow only “harmonically valid” sequences!
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Generating harmony

Now that we have a datatype representing harmony sequences, how do
we generate a sequence of chords?
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Generating harmony

Now that we have a datatype representing harmony sequences, how do
we generate a sequence of chords?

QuickCheck! We simply reuse a standard tool for generation of random
test cases.
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Generating harmony

Now that we have a datatype representing harmony sequences, how do
we generate a sequence of chords?

QuickCheck! We simply reuse a standard tool for generation of random
test cases.

And, to avoid boilerplate code once more, we use generic programming
for generating data:
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Generating harmony

Now that we have a datatype representing harmony sequences, how do
we generate a sequence of chords?

QuickCheck! We simply reuse a standard tool for generation of random
test cases.

And, to avoid boilerplate code once more, we use generic programming
for generating data:

gen :: Ya.(Representable a, Generate (Rep «))
= Gen «
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Generating harmony

Now that we have a datatype representing harmony sequences, how do
we generate a sequence of chords?

QuickCheck! We simply reuse a standard tool for generation of random
test cases.

And, to avoid boilerplate code once more, we use generic programming
for generating data:

gen :: Ya.(Representable a, Generate (Rep «))
= [(String,Int) ] — Gen a
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Examples of harmony generation

testGen :: Gen (Phrase Majyiode)
testGen = gen [("Dom_IV-V",3),("Dom_II-V", 4)]
example :: 10 ()
example = let k = Key (Note j C) Majpode
in sample’ testGen >>= mapM_ (printOnKey k)
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Examples of harmony generation

testGen :: Gen (Phrase Majyiode)
testGen = gen [("Dom_IV-V",3), ("Dom_II-V",4)]

example :: 10 ()
example = let k = Key (Note j C) Majpode
in sample’ testGen >>= mapM_ (printOnKey k)

> example

[C: Maj, D: Dom’, G: Dom’, C: Maj]

[C: Maj, G: Dom’, C: Maj]

[C: Maj, E: Min, F: Maj, G: Maj, C: Maj]

[C: Maj, E: Min, F: Maj, D: Dom’, G: Dom’, C: Maj]

[C: Maj, D: Min, E: Min, F: Maj, D: Dom’, G: Dom’, C: Maj]
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Back to Chordify: chord recognition

Yet another practical application of a harmony model is to improve chord
recognition from audio sources.

092 C 0.96 E

Chord candidates 094 Gm 0097C
1.00C 1.00G 1.00 Em
Beat number ‘ 1 2 3

How to pick the right chord from the chord candidate list? Ask the
harmony model which one fits best.
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Chordify: architecture

» Frontend
» Reads user input, such as YouTube/Soundcloud/Deezer links, or files
Extracts audio
Calls the backend to obtain the chords for the audio
Displays the result to the user

Implements a queueing system, and library functionality
Uses PHP, JavaScript, MongoDB

yvyvVvVYVvYy
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Chordify: architecture

» Frontend

» Reads user input, such as YouTube/Soundcloud/Deezer links, or files
Extracts audio
Calls the backend to obtain the chords for the audio
Displays the result to the user
Implements a queueing system, and library functionality
Uses PHP, JavaScript, MongoDB
» Backend
» Takes an audio file as input, analyses it, extracts the chords
» The chord extraction code uses GADTs, type families, generic
programming (see the HarmTrace package on Hackage)
» Performs PDF and MIDI export (using LilyPond)
» Uses Haskell, SoX, sonic annotator, and is mostly open source

yvyvVvVYVvYy
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Chordify: numbers

Online since January 2013

Top countries: US, UK, Germany, Indonesia, Canada
Views: 3M+ (monthly)

Chordified songs: 1.8M+

Registered users: 200K+

vV v v v Y
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How do we handle these visitors?

» Single VPS, 6 Intel Xeon cores, 24GB RAM, 500GB SSD, 2TB hard
drive

» Single server hosts both the web and database servers
» Can easily handle peaks of (at least) 700 visitors at a time

» Chordifying new songs takes some computing power, but most songs
are in the database already

» Queueing system for busy periods

» Infrastructure costs are minimal
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Frontend (PHP/JS) and backend (Haskell) interaction

» Frontend receives a music file, calls backend with it
» Backend computes the chords, writes them to a file:

» 1;D:min;0.232199546;0.615328798
2;D:min;0.615328798;0.998458049

» Frontend reads this file, updates the database if necessary, and
renders the result

» Backend is open-source (and GPL3); only option is to run it as a
standalone executable
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Logistics of an internet start-up

» Chordify is created and funded by 5 people
» If you can do without venture capital, do it!

» You might end up doing more than just functional programming,
though:

» Deciding on what features to implement next

> Recruiting, interviewing, dealing with legal issues related to
employment

> Taxation (complicated by the fact that we sell worldwide and support
multiple currencies)

» User support

» Outreach (pitching events, media, this talk, etc.)

» But it's fun, and you learn a lot!
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Summary

Musical modelling with Haskell:
» A model for musical harmony as a Haskell datatype

> Makes use of several advanced functional programming techniques,
such as generic programming, GADTs, and type families

When chords do not fit the model: error correction
Harmonising melodies
Generating harmonies

Recognising harmony from audio sources

vV v v v .Y

Transporting academic research into industry
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Play with it!

http://chordify.net
http://hackage.haskell.org/package/HarmTrace
http://hackage.haskell.org/package/FComp
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