
ClojureRedeployed
Jan Stępień @janstepien jan@stepien.cc



© iwillbehomesoon 2012, flickr.com/photos/jp_photo_online/6964634964



I work at



I work at



So how about.. . Clojure?



So how about.. .

Clojure?



So how about.. . Clojure?



Expectations set high

▶ short feedback loop
▶ continuous delivery
▶ automated and pauseless deployment
▶ . . .under load
▶ high availability, dynamic scaling



we’ve called it

Ogrom*
* plethora, immensity, enormity



Outline
1. Architecture
2. Deployment and Operations
3. Lessons Learned



Architecture
to use a bold word



sources protocols

run

core



protocols define interfaces

(defprotocol CollageSource
(collage-by-id [ctx collage-id]))



sourceswrap data sources

(reify CollageSource
(collage-by-id [ctx collage-id]

(fetch-from-mysql ctx collage-id)))



sources protocols

run

core



core defines HTTP endpoints

each core endpoint
▶ is independent
▶ has all dependencies injected
▶ is absolute-path-agnostic
▶ is a value



core uses Liberator

(defresource product
:exists? find-product-or-return-nil
:handle-ok render-product
:handle-not-found render-error-message)



:exists?

:handle-ok
200true

:handle-not-found
404

false



core uses bidi

(def routes
["/"

{"product" product
"ratings" ratings}])



sources protocols

run

core



runwires everything together

products GET /products

POST /comments

comments GET /comments

users



/v1 /de-DE

GET /products

GET /comments

POST /comments

GET /v1/de-DE/comments



/v1 /de-DE

GET /products

GET /comments

POST /comments

GET /v1/de-DE/comments



routing

GET /comments POST /comments GET /products

users

third-party API MySQL

products

Elasticsearch

comments



run instantiates a self-contained service

MySQL

Elasticsearch

logstash

3rd-party
API

ogrom



MySQL

Elasticsearch

logstash

3rd-party
API

ogrom

MySQL

Elasticsearch

logstash

3rd-party
API

ogrom

MySQL

Elasticsearch

logstash

3rd-party
API

ogrom

MySQL

Elasticsearch

logstash

3rd-party
API

ogrom



/v1

/fr-FR

/nl-NL

/de-DE

/en-GB

GET /products

GET /comments

POST /comments



MySQL

Elasticsearch

logstash

3rd-party
API

ogrom



Deployment
and Operations



Deployment used to be cumbersome

1. Create an überjar
2. Upload to n boxes
3. Restart processes
4. Juggle load balancers



sources protocols

run

core

▶ sources, protocols, core are sem-versioned
▶ run is deployed straight frommaster



sources

runprotocols

core

CI
on every push

to master

S3

depl.
tool

überjar

commit id



Elastic Beanstalk and its environments

▶ EBwraps EC2 and ELB
▶ environments with instances
▶ runs Docker containers



deployment tool

AWS API

CI

 commit id

box 1 box 2

S3
(überjar)



api.stylefruits.de

CloudFront

Beanstalk 1 Beanstalk 2



Lessons Learned
and FutureWork



Feedback loops are shorter

▶ Productive development environment
▶ Bug fixes and features can be deploy the
samemorning they were asked for



Splitting wasn’t strictly necessary

sources protocols

run

core



Docker and empowered developers

▶ Developers are in control over deployment
▶ Reduced dependency on the ops team
▶ Production env ≈ development env



There are some trade-oďs

▶ Beanstalk allows opening only a single port
when running Docker containers

▶ Deployment under load vs. JIT compilation
▶ The deployment takes a while: Clojure
compile times, JVM start-up time, etc.

▶ There’s no staging environment



Ogrom is an improvement

▶ Client teams are happy with it
▶ It performs well under load and is durable
▶ Ourmain web app uses the Ogrom too now



Plans for the future

▶ Ring Swagger
▶ Clojure 1.7 and its reduced compilation time
▶ Clojure(Script) client API





ClojureRedeployed
Jan Stępień @janstepien jan@stepien.cc


