
GPU programming in Haskell

GPU programming in Haskell

Henning Thielemann

2015-01-23



GPU programming in Haskell

Motivation: Sensor calibration

1 Motivation: Sensor calibration

2 Haskell GPU programming

3 Fact-check

4 Accelerate programming

5 Application: Patch image

6 Conclusion



GPU programming in Haskell

Motivation: Sensor calibration

Tetravue

http://tetravue.com/

3d camcorder

not just RGB images, but RGBZ (Z = depth)

http://tetravue.com/


GPU programming in Haskell

Motivation: Sensor calibration

Sensor calibration

my task:

determine correction function for measured depths for every
sensor

more than a million sensors

1s per sensor ∼ 12 days whole camera calibration
0.1s per sensor ∼ 28h whole camera calibration
0.01s per sensor ∼ 3h whole camera calibration

my favorite implementation language:

Haskell



GPU programming in Haskell

Motivation: Sensor calibration

First approach to calibration: computation on CPU

Hmatrix

linear algebra

rich high-level functions out of the box

based on LAPACK/BLAS

internally uses vector computing
internally processes objects in cache-friendly chunks

works with many GHC (Haskell compiler) versions

first application prototype: two weeks

adaption to changed requirements (saturated measurements):
two weeks



GPU programming in Haskell

Motivation: Sensor calibration

Second approach: use graphics processor (GPU)

Graphic processors evolved
from accelerators for special graphic operations
to general purpose massive parallel processors.

GPU less flexible than CPU, but more computing power

“GPGPU”
(General-purpose computing on graphics processing units)

calibration perfectly fits to GPU programming scheme



GPU programming in Haskell

Haskell GPU programming

1 Motivation: Sensor calibration

2 Haskell GPU programming

3 Fact-check

4 Accelerate programming

5 Application: Patch image

6 Conclusion



GPU programming in Haskell

Haskell GPU programming

Nvidia GPU programming

CUDA – formerly Compute Unified Device Architecture

an extended C programming language – how inspiring

lock-step parallelism

divide program into small threads

e.g., one thread per pixel in an image



GPU programming in Haskell

Haskell GPU programming

Haskell GPU support

Program CUDA from Haskell

accelerate: high-level, large range of back-ends

Obsidian: mid-level, small range of back-ends

cuda: low-level – plain bindings to CUDA language

http://hackage.haskell.org/package/accelerate
http://hackage.haskell.org/package/Obsidian
http://hackage.haskell.org/package/cuda


GPU programming in Haskell

Haskell GPU programming

Accelerate back-ends

back-end addresses state

Interpreter testing works
CUDA Nvidia graphic cards works
CL any graphic card through OpenCL prototype
LLVM any processor through LLVM prototype
Repa any processor in plain Haskell stalled
FPGA programmable hardware fictional



GPU programming in Haskell

Haskell GPU programming

Second approach to calibration: use GPU

Accelerate-CUDA
pros:

array programming abstracts from GPU

no need to learn CUDA and GPU internals

cons:

need to implement high-level functions already provided by
Hmatrix

type-correct Accelerate programs may fail at runtime
due to missing implementations in CUDA back-end

Accelerate always needs cutting-edge Haskell compiler GHC

problematic on MS Windows

https://github.com/AccelerateHS/accelerate/issues/129


GPU programming in Haskell

Haskell GPU programming

Second approach to calibration: results

Accelerate-CUDA: effort needed

learning Accelerate and porting from Hmatrix: two weeks

however: fails at run-time

getting it running: one month

CUDA version 10 times slower than Hmatrix version

optimizations with CUBLAS and Obsidian: another month

still slower than Hmatrix



GPU programming in Haskell

Fact-check

1 Motivation: Sensor calibration

2 Haskell GPU programming

3 Fact-check

4 Accelerate programming

5 Application: Patch image

6 Conclusion



GPU programming in Haskell

Fact-check

Nvidia advertisement

CPU:

4 cores
keep illusion of a sequential processor from the 80’s:
microcode, pipelining, simulate registers, execution re-ordering,
superscalarity, hyper-threading, cache
can run an operating system

GPU:

96 cores
pure computation power
needs a supervising system



GPU programming in Haskell

Fact-check

Reality

CPU:
8 float multiplications per core (AVX vector computing)
2.20 GHz
every of 4 cores operates independently

GPU:
1 float multiplication per core
0.95 GHz
96 cores organized as 2 independent processors with 48 cores
still needs space for special graphic operations
transfer of input and output between CPU and GPU
transfer parallel to GPU computing – programming overhead

96·1·0.95
4·8·2.20 ≈ 1.3

accelerate factors around 100 from CPU to GPU → nonsense

achieved by comparing optimized GPU code
with non-vectorized CPU programs



GPU programming in Haskell

Accelerate programming

1 Motivation: Sensor calibration

2 Haskell GPU programming

3 Fact-check

4 Accelerate programming

5 Application: Patch image

6 Conclusion



GPU programming in Haskell

Accelerate programming

Haskell Accelerate framework

pros

elegant array programming model

high-level array transformations instead of low-level loops
→ good for programmer and parallelization

array fusion

cons

Embedded Domain Specific Language (EDSL)

need to rewrite plain Haskell code

too many problems are only caught at runtime
e.g. type-correct 6= translatable to compilable CUDA



GPU programming in Haskell

Accelerate programming

Example: matrix multiplication 4× 3 with 3× 2

zipWith (*) =

fold1 (+) =



GPU programming in Haskell

Accelerate programming

Example: matrix multiplication

typetypetype Matrix ix a = A.Acc (A.ArrayArrayArray (ix:.IntIntInt:.IntIntInt) a)

multiplyMatrixMatrix ::

(A.Shape ix , A.Slice ix , A.IsNum a, A.Elt a) =>=>=>

Matrix ix a -> Matrix ix a -> Matrix ix a

multiplyMatrixMatrix x y =

casecasecase (matrixShape x, matrixShape y) ofofof

(_ :. rows :. _cols , _ :. _rows :. cols) ->

A.fold1 (+) $ transposetransposetranspose $

A.zipWithzipWithzipWith (*)

(A.replicatereplicatereplicate (A.lift $ Any:.All:.All:.cols) x)

(A.replicatereplicatereplicate (A.lift $ Any:.rows:.All:.All) y)

replicate, zip, fold instead of loops

relies on array fusion

one implementation for single and batched operation

→ much more fundamental and elegant than MatLab



GPU programming in Haskell

Accelerate programming

MatLab vs. Accelerate

MatLab (proprietary) / Octave (free clone)

used by many scientists and engineers for numerical
computations

for building prototypes and eternal prototypes :-)

typing discipline: (almost) everything is a complex valued
array

praised for loop-less programming

problem:
no general scheme for loop-less programming like map/reduce,
only fixed operations like vector valued addition, dot product
and cumsum



GPU programming in Haskell

Accelerate programming

MatLab: manual matrix multiplication

functionfunctionfunction C = matmul(A,B)

[ra,ca] = sizesizesize(A);

[rb,cb] = sizesizesize(B);

C = zeroszeroszeros(ra,cb);

forforfor k = 1:ra

forforfor j = 1:cb

C(k,j) = dotdotdot(A(k,:), B(:,j));

endendend

endendend

loop-less dot product

still two loops required

→ more difficult to compute parallelly

→ more bound-checking



GPU programming in Haskell

Accelerate programming

MatLab: batched matrix multiplication

functionfunctionfunction C = matmul_batched(A,B)

[na,ra,ca] = sizesizesize(A);

[nb,rb,cb] = sizesizesize(B);

n = minminmin(na ,nb);

C = zeroszeroszeros(n,ra,cb);

forforfor k = 1:n

C(k,:,:) =

reshapereshapereshape(A(k,:,:),ra ,ca) *

reshapereshapereshape(B(k,:,:),rb ,cb);

endendend

one loop required

different implementations for single and batched operation



GPU programming in Haskell

Accelerate programming

Accelerate-CUDA: Matrix multiplication performance

5-8 times of Hmatrix time on a single CPU core,
10 times of CUBLAS time (gemmBatched)

Nvidia’s profiler hardly useful in connection with Accelerate

suspicion: not much use of “Shared Memory”
(kind of explicit cache)
as proposed by CUDA programming guide

“quick” solution:

CUBLAS (however, in calibration other slow parts remain)

requires initialization, contradicts functional approach

https://groups.google.com/forum/#!topic/accelerate-haskell/StsXiF7IU8I


GPU programming in Haskell

Accelerate programming

Accelerate-CUDA problems

runtime failures

non-closed functions in awhile (now fixed)
divMod not implemented (now fixed)
operation not supported by back-end (should be type error)
nested data-parallelism possible in Accelerate language

only flat data-parallelism possible on GPU,
not enforced by type-system
problem 1: free usage of array indexing (!)

problem 2: conversion scalar expression ↔ singleton array
GPU launch time-out

strange pipeline operator >-> for breaking fusion
more hack than solution

type failures

Complex is not IsNum
broken type class hierarchy using FlexibleInstances

no custom Array types possible

https://github.com/AccelerateHS/accelerate/issues/172
https://github.com/AccelerateHS/accelerate/issues/171
https://github.com/AccelerateHS/accelerate/labels/nested%20parallelism
https://github.com/AccelerateHS/accelerate/issues/193
https://github.com/AccelerateHS/accelerate/issues/202
https://groups.google.com/forum/#!topic/accelerate-haskell/X1jVQGCdYLY


GPU programming in Haskell

Accelerate programming

Obsidian

mid-level programming of CUDA, OpenCL and sequential C
on CPU

explicit control of parallelism arrangement in Threads, Thread
blocks, Grid

supports batched monadic/imperative programming

my applications:

Cholesky decomposition for band-matrices:
based on mapAccum (not available in Accelerate)

pivot vector to permutation array conversion:
requires mutable manipulation (not complete in Obsidian)

call Obsidian code from Accelerate



GPU programming in Haskell

Application: Patch image

1 Motivation: Sensor calibration

2 Haskell GPU programming

3 Fact-check

4 Accelerate programming

5 Application: Patch image

6 Conclusion



GPU programming in Haskell

Application: Patch image

Patch image

goal:

compose big image from multiple flat scans

more restricted but more accurate than panorama stitchers
like Hugin

processing steps:

orientate horizontally

find positions using CUFFT Fourier transform

merge parts smoothly

problems with Accelerate-CUDA:

Complex not instance of IsNum

launch time-outs

too slow



GPU programming in Haskell

Conclusion

1 Motivation: Sensor calibration

2 Haskell GPU programming

3 Fact-check

4 Accelerate programming

5 Application: Patch image

6 Conclusion



GPU programming in Haskell

Conclusion

Conclusion

Getting full computation power:

high performance – not only multi-core

mind vector computing: Neon; AltiVec; MMX, SSE, AVX

mind cache locality

GPUs:

GPU power much less than advertised

time needed to port program to GPU

time needed to maintain both CPU and GPU version

GPU-like parallelism possible with vectors on CPU, too



GPU programming in Haskell

Conclusion

Conclusion

If someone claims high acceleration factors when porting code from
CPU to GPU, ask him whether he optimized his CPU code by

vector computing

cache friendly memory access patterns



GPU programming in Haskell

Conclusion

Conclusion

Haskell:

elegant GPU computing through Accelerate

performance may be bad

failed fusion
expensive memory access patterns
no control over shared memory (= explicit cache)

current performance makes it useless

better use Hmatrix for linear algebra for now

NVBLAS even moves Hmatrix computations to GPU



GPU programming in Haskell

Conclusion

Conclusion

various restrictions by several parts:

vendor lock-in to Nvidia’s CUDA framework and libraries
(free of charge but closed-source)

update to new CUDA version removes support for older GPUs

GPU requires lock-step parallelism

Accelerate: immutable operations,
no batched mapAccum/scan

Obsidian: batched mapAccum,
may support mutable manipulations someday



GPU programming in Haskell

Conclusion

Final Conclusion

not enough to move computation from CPU to GPU

weakest link in the chain:
one slow Accelerate operation can make the whole GPU
programming useless


	Motivation: Sensor calibration
	Haskell GPU programming
	Fact-check
	Accelerate programming
	Application: Patch image
	Conclusion

