
Functional Programming
and the Web

Frontend Development
in Purescript

Michael Karg

Jürgen Nicklisch-Franken

Hello!
We are Symbolian

▣Founded February 2015 in Berlin
▣Currently 5 employees + external expertise
▣Efficient software factory for high quality code
▣Technology-driven innovation

1. Purescript
The language

History and authors

 Phil Freeman

 Gary Burgess – Developer at SlamData

 John A. De Goes – CTO of SlamData

 In development since 2013, current version 0.8 (Feb. 2016)

 Notable companies: SlamData – Visual Analytics for NoSQL
(Boulder, CO)

Project structure

 psc – purescript compiler

 psci – interactive REPL

 psc-bundle - “linker” / deployment tool

 psc-docs – documentation generator (markdown format)

 psc-publish – documentation generator for the pursuit API search
engine

 psc-hierarchy – graphical doumentation generator for type classes

 Project language: Haskell

 psc target language: JavaScript

Language properties

 purely functional

 strong, static type system

 compiles to human-readable JavaScript

 standalone output – no dedicated JavaScript runtime necessary

Code generation examples

increment :: forall f. (Functor f) => f Int -> f Int

increment = map (+1)

var increment = function (__dict_Functor_0) {
 return Prelude.map(__dict_Functor_0)(function (_0) {
 return _0 + 1 | 0;
 });
};

var main = function __do() {
 var _1 = Control_Monad_ST.newSTRef("Hello")();
 return Prelude[">>="]

(Control_Monad_Eff.bindEff)
(Control_Monad_ST.readSTRef(_1))
(Control_Monad_Eff_Console.log)();

};

main = do
 ref <- newSTRef "Hello"
 readSTRef ref >>= log

Language properties

 Purescript's design promises a smooth transition for developers from Haskell

● similar type class hierarchy

class (Eq a) <= Ord a where

 compare :: a -> a -> Ordering

● similar abstractions and control structures (Monads / Effects, Applicatives, Functors, ...)

● similar syntax (pattern matching, do-notation, modules, sum and product data types,
newtypes / type aliases, language keywords)

● similar type annotations

liftM1 :: forall m a b. (Monad m) => (a -> b) -> m a -> m b

liftM1 f a = do

 a' <- a

 return (f a')

Differences from Haskell - Syntax

● no tuple syntax

● no cons patterns (less powerful pattern matching)

● row polymorphism in records

let showPerson { first: x, last: y } = y ++ ", " ++ x

let person1 = { first: "Phil", last: "Freeman" }

showPerson person1

"Freeman, Phil"

showPerson { first: "Phil", last: "Freeman", location: "Los Angeles" }

"Freeman, Phil"

● record access

person1.last

Differences from Haskell – Types

● Explicit forall

● Named instances

● Extensible Effects

main :: forall eff.

 -> Eff

 (canvas :: Canvas,

 , random :: RANDOM

 , err :: EXCEPTION

 , st :: ST ConeST

 , dom :: DOM

 | eff

)

 Unit

Differences from Haskell – The JS world

● evaluated by a JavaScript engine (V8, Spidermonkey...)

==> strict evaluation; no concurrency; varying performance characteristics

● package splits are cheap

==> minimal Prelude (~ 730 sloc), highly specialized packages (purescript-either, purescript-
maybe, ...)

● FFI into the JS world

foreign import concatString :: String -> String -> String

exports.concatString = function (s1) {

 return function (s2) {

 return s1 + s2;

 };

};

2. Purescript
The ecosystem

Basics: building

 psc + node / npm, bower – well-known tools of the JS world

 pulp build system

==> no difficulties for any frontend developer

 However: very little compiler optimizations (only TCO and DCE)

==> without inlining and partial vs. total application in function calls,
the equivalent plain JS code performs notably better

Search: pursuit -- https://pursuit.purescript.org

 Search by symbol name, type or package name (just like hoogle or
hayoo)

Framework: Thermite

 wrapper for ReactJS with a clean functional API

Framework: Halogen

 a type-safe declarative UI
library

 native Purescript
implementation

type State =

 { count :: Int

 }

data Input a

 = Increment a

 | Decrement a

ui :: forall g. (Functor g) => Component State Input g

ui = component render eval

 where

 render state =

 H.div_

 [H.button [E.onClick $ E.input_ Decrement]

 [H.text "-"]

 , H.p_ [H.text (show state.count)]

 , H.button [E.onClick $ E.input_ Increment]

 [H.text "+"]

]

●

eval :: Eval Input State Input g

eval (Increment next) = do

 modify (\state -> state { count = state.count + 1 })

 pure next

eval (Decrement next) = do

 modify (\state -> state { count = state.count - 1 })

 pure next

Graphics: LambdaCube 3D

 purely functional DSL for programming the GPU

 WebGL rendering backend uses Purescript

Conclusion

 wide and diverse ecosystem for such a relatively young language

 fast-growing toolbox for tackling your individual use case

 plenty of interesting approaches and projects to toy around with and
get fresh ideas

3. Purescript
The community

Why community?

 Community: Populace of any language's ecosystem

 Community size and structure directly influences the way a language
is being used, and can be used

 When choosing a language for commercial development and
productive use: get to know the community as well

 Given the demands of a commercial application of any language: will
its community be a support, or an obstacle?

 NB. No intention to judge people; just one adaptation more of your
development process, trying to avoid false expectations

The purescript community

 purescript compiler: 4 individuals ~ 2/3 of all commits

 same individuals responsible for the vast majority of purescript
packages

 ==> tiny community

The purescript community

 tight-knit communication

 communication often in closed circles or one on one

 compared to the Haskell community, seldom open debates or call for
feedback

 discussions take place in github's issue tracker or the purescript IRC
channel – not the best way to keep up or retrace

 consequence: hasty and premature decisions, lack of prioritization of
open issues and TODOs

Examples

 explicit imports – implement, protest, rethink, shrug

 removal of cons patterns... in a language boasting pattern matching

 restructuring of type class hierarchy; (cf. Int / Num)

NB. w/o inliner, each (+), (-), ... still corresponds to a dictionary
lookup of the instance's method at runtime, impacting performance

 orphan instances banned completely

 API changes in and refactoring of the Prelude

 ==> we're not talking about language periphery here

 ==> additionally, all of the above changes in no more than 6 months

The Ugly

 frequent breakage of your code base

 extra expenditure of time (> 1d) just to get it to build again

 due to the character of the community, changes may be pleasing
from an aesthetical-theoretical POV, but real world code becomes
horrible

The Bad

 due to the size of the community: still no official specs or roadmap for
Purescript 1.0

 please see as a suggestion, since it could mitigate a lot of the current
Ugly

 Purescript users know what they're getting into – and when!

 Could serve as a base for debate and discussion, enabling feedback

 Would make it possible to prioritize, order and allocate development
resources accordingly

The Good

 familiarity

 everyone in the community puts in huge efforts

 development of Purescript advances at a fast pace

 short response times for any issue you might have

 Kudos to the community for the great learning resources (e.g.
Purescript book) and the great tooling (e.g. pursuit API search)

still doing GUI stuff?

4. Purescript
The experience

GUI Programming in Haskell

 „GUI is not needed“ (2010)

 „I see why'd you need doing GUI code. Most of the time it's
unnecessary, though.“ (2006)

 „wxHaskell and Gtk2Hs are the main two GUI libraries -- they're
reasonably comparable in terms of quality.“ (2010)

 Can't wait until we have a functional lib with the same quality of
gtk2hs (2006)

 „Javascript is pretty handy for GUI“ (2005)

 „I'm not certain what you mean, do you want a GUI or a web UI“
(2009)

The pretty and good and unsuable or the ugly and evil and usable

GUI and the Browser

ghcjs Elm purescript Idris

Haskell (GHC)
to JavaScript
compiler

Functional
programming in
your browser

Haskell like
language

A Language with
Dependent Types
and Javascript
backend

Full Haskell
Language and
Runtime

Designed around
high-level front-end
development

Has Typeclasses
and RankNTypes.

Full dependent
types with
dependent pattern
matching

Lightweight
preemptive
threading

Time-travelling
debugger and Hot-
swapping of code

Has row
polymorphism
and extensible
effects.

Dependent records
with projection and
update

All goodies
like MVars,
WeakReferen
ces, ...

First class FRP and
Reactive DOM

No runtime. Tactic based
theorem proving

+ +++ ++ +++

Our contributions to the community

 Wrote purescript-webgl-generator in Haskell to generate purescript to
Javascript FFI code from WebGL IDL (Khronos)

 Added higher level binding code to make the use of the API
convenient and type safe (purescript-webgl)

 Only magic is in defining „the binding“(exchange to the GPU) in the
purescript type system

 Wrote additional needed packages purescript-vector, purescript-
matrix and purescript-typedarray

 Wrote purescript-webgl-examples package to test our bindings
against the lessons 1-9 from http://learningwebgl.com

 Switched to use a global webgl context variable for performance

The good an the bad

Plus

 The core of the typechecker and
codegenerator is relatively stable
(we found some bugs in both)

 The extensible record system is
fantastic (see Extensible records
with scoped labels, Daan Leijen),
the extensible Effects system
(build onto records) is usable.

 The generated code is easy and
transparent to follow.

 Error messages have much
improved.

Minus

 A lot of breaking changes in
releases (e.g. 0.7 meltdown) with
some annoying decisions. (E.g.
Cons-patterns have been
disallowed)

 Tendency in the community to
find the one an right way and
forbid other (e.g. implicit exports)

 Bad runtime performance:

 Naive currying

 No inlinining

 Naive Type class lookup

coneNumLevel

coneModify

Purescript

Purescript

JavascriptJavascriptJavascript

Javascript

Compilation -1-

coneEnumerate

Purescript

Javascript

Compilation -2-

The Ecosystem we use

 We use Bower as package system, as it is the recommended
solution

 We use Pulp as build system, as it is specially developed for
this purpose

 We use the Browsers WebDevelopers tools for low level
debugging and profiling

 We use Pursuit to query purescript packages on the Web

 We use the Atom editor with purescript-langugage and
purescript-ide (atom package) and purescript-ide (haskell
package) as basic IDE.

The Product we build:

ConeCanvas is a widget for data classification:

 We use the 3rd dimension

 We reinvent the classical treeview

 We make data intuitively manageable

 We improve the human computer interaction

The problem we attack with Symbolian:

 How to bring order to data!

 How to resolve the problem of data separation

Thanks!
Any questions?

	STitle
	SHello
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Perception based on Classification
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

