
Type the Web with Servant!

Andres Löh

BOB, Berlin, 19 February 2016 — Copyright © 2016 Well-Typed LLP

.

.Well-Typed

.The Haskell Consultants



Servant

An embedded domain-specific language for describing Web
APIs in Haskell (using several modern extensions).

Created by:

I Alp Mestanogullari
I Sönke Hahn
I Julian K. Arni

.

.Well-Typed



Features

I Type-safe
I As little “boilerplate code” as possible
I Extensible

Tools to create:

I Web servers / services
I Clients
I Client functions in other languages
I Mock servers and clients
I Type-safe links
I Documentation
I . . .

.

.Well-Typed



Features

I Type-safe
I As little “boilerplate code” as possible
I Extensible

Tools to create:

I Web servers / services
I Clients
I Client functions in other languages
I Mock servers and clients
I Type-safe links
I Documentation
I . . .

.

.Well-Typed



What is a Web API?

Describes:

I what requests are valid,
I what extra information is requested and its format, such as:

I request body,
I request headers,
I parameters,

I what is returned by the request and in what format.

.

.Well-Typed



What is a (Haskell) type?

Describes:

I what inputs a piece of code expects,
I the format of the inputs,
I what is returned by a piece of code and in what format.

Conceptually, Web APIs are types.

.

.Well-Typed



What is a (Haskell) type?

Describes:

I what inputs a piece of code expects,
I the format of the inputs,
I what is returned by a piece of code and in what format.

Conceptually, Web APIs are types.

.

.Well-Typed



Types vs. terms

Haskell is statically typed:

I every term is assigned a type (inference + checking),
I only if all terms have valid types, the program is executed.

Type errors:

I happen at compile-time,
I do not prevent, but reduce runtime errors,

.

.Well-Typed



Types vs. terms

Haskell is statically typed:

I every term is assigned a type (inference + checking),
I only if all terms have valid types, the program is executed.

Type errors:

I happen at compile-time,
I do not prevent, but reduce runtime errors,

.

.Well-Typed



An example Servant API description

Informal:

GET / obtain the current value
POST /step increment counter

type Counter = Get ’[JSON] Int
:<|> "step" :> Post ’[JSON] Int

.

.Well-Typed



An example Servant API description

Informal:

GET / obtain the current value
POST /step increment counter
POST /step/:n increment counter by n

type Counter = Get ’[JSON] Int
:<|> "step" :> Post ’[JSON] Int
:<|> "step" :> Capture "n" Int

:> Post ’[JSON] Int

.

.Well-Typed



A type?

type Counter = Get ’[JSON] Int
:<|> "step" :> Post ’[JSON] Int
:<|> "step" :> Capture "n" Int

:> Post ’[JSON] Int

I Lives on the Haskell type level.
I Does not directly have code associated with it.

I Contains sufficient information to compute other types!

.

.Well-Typed



A type?

type Counter = Get ’[JSON] Int
:<|> "step" :> Post ’[JSON] Int
:<|> "step" :> Capture "n" Int

:> Post ’[JSON] Int

I Lives on the Haskell type level.
I Does not directly have code associated with it.
I Contains sufficient information to compute other types!

.

.Well-Typed



Type-level computation

Compute types from other types, all at compile time:

type Counter = Get ’[JSON] Int
:<|> "step" :> Post ’[JSON] Int
:<|> "step" :> Capture "n" Int

:> Post ’[JSON] Int

Server and client (simplified):

type Counter′ = (IO Int, IO Int, Int -> IO Int)

Other information is used to do all the tedious work.

.

.Well-Typed



Type-level computation

Compute types from other types, all at compile time:

type Counter = Get ’[JSON] Int
:<|> "step" :> Post ’[JSON] Int
:<|> "step" :> Capture "n" Int

:> Post ’[JSON] Int

Server and client (simplified):

type Counter′ = (IO Int, IO Int, Int -> IO Int)

Other information is used to do all the tedious work.

.

.Well-Typed



Type-level computation

Compute types from other types, all at compile time:

type Counter = Get ’[JSON] Int
:<|> "step" :> Post ’[JSON] Int
:<|> "step" :> Capture "n" Int

:> Post ’[JSON] Int

Server and client (simplified):

type Counter′ = (IO Int, IO Int, Int -> IO Int)

Other information is used to do all the tedious work.

.

.Well-Typed



Describing a server

type Counter = Get ’[JSON] Int
:<|> "step" :> Post ’[JSON] Int
:<|> "step" :> Capture "n" Int

:> Post ’[JSON] Int

For free:
I Route requests to the right (sub-)handler.
I Send status codes for illegal requests.
I Extract and parse request parameters (and handle errors).
I Construct the response from the Haskell value.

Need to supply:

type Counter′ = (IO Int, IO Int, Int -> IO Int)

(And info about where to run the server.)
.

.Well-Typed



Describing a client

type Counter = Get ’[JSON] Int
:<|> "step" :> Post ’[JSON] Int
:<|> "step" :> Capture "n" Int

:> Post ’[JSON] Int

Need to supply info about where the server is running.

We obtain:

type Counter′ = (IO Int, IO Int, Int -> IO Int)

For free:

I Construct the right request depending on the code we use.
I Send the request to the server and obtain the response.
I Extract the result value from the response.

.

.Well-Typed



Generating documentation

type Counter = Get ’[JSON] Int
:<|> "step" :> Post ’[JSON] Int
:<|> "step" :> Capture "n" Int

:> Post ’[JSON] Int

For free:

I What the valid requests are.
I What types the inputs and outputs have.
I Status codes.

Need to supply: Additional textual information.

Simplified:

type CounterDocs = (String, String, (String, String))

.

.Well-Typed



Generating documentation

type Counter = Get ’[JSON] Int
:<|> "step" :> Post ’[JSON] Int
:<|> "step" :> Capture "n" Int

:> Post ’[JSON] Int

For free:

I What the valid requests are.
I What types the inputs and outputs have.
I Status codes.

Need to supply: Additional textual information.

Simplified:

type CounterDocs = (String, String, (String, String))

.

.Well-Typed



The Servant approach

EDSL:

I Abstraction and modularity.
I Extensibility.

API types:

I Possibly different implementations of the same API.
I Compatibility of e.g. a server and a client.
I A lot of functionality for free.
I Can concentrate on writing the interesting code.
I Safety and ease of refactoring.

.

.Well-Typed



Types as a helpful guide

Types are not the enemy.

Types limit and guide the programming process:

I polymorphism helps us to focus on the right inputs and
outputs,

I types of inputs and outputs help us to know the “shapes”
they can have,

I more and more allow even interactive program
development (inspired by dependently typed languages).

Servant brings this philosophy to web development as well.

.

.Well-Typed



Types as a helpful guide

Types are not the enemy.

Types limit and guide the programming process:

I polymorphism helps us to focus on the right inputs and
outputs,

I types of inputs and outputs help us to know the “shapes”
they can have,

I more and more allow even interactive program
development (inspired by dependently typed languages).

Servant brings this philosophy to web development as well.

.

.Well-Typed



Types as a helpful guide

Types are not the enemy.

Types limit and guide the programming process:

I polymorphism helps us to focus on the right inputs and
outputs,

I types of inputs and outputs help us to know the “shapes”
they can have,

I more and more allow even interactive program
development (inspired by dependently typed languages).

Servant brings this philosophy to web development as well.

.

.Well-Typed



The Servant API description language

Seen:

I Nesting.
I Choice.
I Strings.
I Captures.
I HTTP verbs.
I Content types.

Also:

I Request and response headers.
I Request body.
I Query parameters.
I . . .

.

.Well-Typed



Current and future work

New in 0.5:

I Efficient routing.
I Better error handling.
I More predefined content types.

Other ongoing work:

I Authentication.
I Integration with other web frameworks.
I Client code generation for several non-Haskell languages.
I . . .

.

.Well-Typed



https://haskell-servant.github.io

Questions?

andres@well-typed.com

Interested in Haskell training?
Subscribe to our annnouncement mailing list at

http://www.well-typed.com/cgi-bin/mailman/listinfo/events
or look at

http://www.well-typed.com/services_training


