
Dynamic Programming -
with grammars, algebras, products

Stefanie Schirmer
@linse

combinatorial
optimization problems

combinatorial counting/enumerating all
possible solutions of a recursive problem

optimization finding the desired solution

example problems
boggle,
money changing problem,
text / sequence alignment,
RNA structure prediction

classic dynamic
programming

classic dynamic programming
1) characterize structure of optimal solution
2) recursively define value of optimal solution
3) compute value of optimal solution
4) construct opt. solution from computed info

classic dynamic programming

 n = 5

1) characterize structure of optimal solution

count decompositions?
4

1

3

classic dynamic programming
2) recursively define value of optimal solution
 D[n] = D[n-1] + D[n-3] + D[n-4]
 D[0] = 0 4

1

3

classic dynamic programming
3) compute value of optimal solution

 n = 5
n 0 1 2 3 4 5
D 0 1 1 2 4 6

4

1

3

classic dynamic programming
4) construct opt. solution from computed info
1+1+1+1+1,
1+1+3, 1+3+1, 3+1+1,
1+4, 4+1

n 0 1 2 3 4 5
D 0 1 1 2 4 6

DP solves optimization problems
- over a large (exponential) search space
- in a reasonable (polynomial) time

The development of successful
DP recurrences is a matter of
“experience, talent and luck”.

Life, the universe and all the rest

Candidates are trees
Questions are algebras
Programs are grammars

Products are fun !!!

life, the universe
and all the rest

reverse engineering of DP problems
If this is the answer..

42

match(a, x, a) = x+12

30
 match
 / | \
 B B

match(a, x, a) = x+12
18

 match
 / | \
 O O

 match
 / | \
 B B

choice of the maximum score
 18 -10

 match
 / | \

 B match B
 / | \

 O max O
 / \

replace(l, x, r) = x-2 delete(a,x) = x-2
 20 -8

 match
 / | \

 B match B
 / | \

 O max O
 / \

 replace delete
 / | \ / |

 B S B

match(a, x, a) = x+12
replace(l, x, r) = x-2

delete(a,x) = x-2

 match
 / | \

 B match B
 / | \

 O max O
 / \

 replace delete
 / | \ / |

 B match S B replace
 / | \ / | \

 K match K K replace S
 / | \ / | \

 O replace O O replace K
 / | \ / | \

 N delete P N replace O
 / | / | \

 F $ F $ P

 match
 / | \

 B match B
 / | \

 O max O
 / \

 replace delete
 / | \ / |

 B match S B replace
 / | \ / | \

 K match K K replace S
 / | \ / | \

 O replace O O replace K
 / | \ / | \

 N delete P N replace O
 / | / | \

 F $ F $ P

 match
 / | \

 B match B
 / | \

 O max O
 / \

 replace delete
 / | \ / |

 B match S B replace
 / | \ / | \

 K match K K replace S
 / | \ / | \

 O replace O O replace K
 / | \ / | \

 N delete P N replace O
 / | / | \

 F $ F $ P

We found two alignments of

BOBKONF	
MMDRRRR	
BO-SKOP

BOBKONF	
MMRMMRD	
BOSKOP-

Score: 42 Score: 14

Each alignment + score is
represented by the same formulas

BOBKONF	
MMDRRRR	
BO-SKOP

BOBKONF	
MMRMMRD	
BOSKOP-

Score: 42 Score: 14

reverse engineering summary

1) result of a DP algorithm: value of a formula
 - built from evaluation functions,
 - interleaved with applications of choice function

reverse engineering summary

2) all applications of the choice function
move to the top.

reverse engineering summary

3) formulas are candidate solutions

reverse engineering summary

4) input sequences are part of each formula

reverse engineering -
reversed :-D

reverse engineering, reversed :-D
4. Read the input sequence
3. Construct candidate solutions (= formulas)
2. Move choice function down/inside formulas
1. Evaluate formulas to get desired result

candidates are trees

Steps
 - read input,
 - apply choice and
 - evaluate
are always the same and can be automated.

Talents and experience go into
constructing candidates:
 - which candidates arise for a given input?
 - what does a desired candidate look like?
⇒ a language of formulas (trees)

With this language, constructing
candidates can also be automated!

We get everything for free except for the
creative part! <3

1 signature Align(alphabet, answer) {
2 answer replace(<alphabet, alphabet>, answer);
3 answer delete(<alphabet, void>, answer);
4 answer insert(<void, alphabet>, answer);
5 answer empty(<void, void>);
6 choice [answer] h([answer]);
7 }

the signature

the signature
signature = datatype hiding in
every DP program. BUT in classical
style it’s invisible, since
candidates are never represented.

questions are algebras

evaluation algebras
evaluation = scoring candidates
 + making choices

evaluation algebra = scoring functions
 + choice function

choice functions

h:	[values]	->	[values]

most popular: h = max, h = min
also popular: h = maxk , h = mink

enumeration: h = id (keep all)
combinatorics: h = sum
sampling: h = random choice

1 algebra score implements
2 Align(alphabet = char, answer = int) {
3 int replace(<char a, char b>, int x) {
4 if (a == b) return x + 12; else return x - 2; }
5 int delete(<char g, void>, int x) { return x - 2; }
6 int insert(<void, char g>, int x) { return x - 2; }
7 int empty(<void, void>) { return 0; }
8 choice [int] h([int] l) { return list(maximum(l)); }
9 }

scoring alignments: algebra score

we evaluate
m(B, m(O, r(B, m(K, m(O, r(N, d(F, $) P) O) K) S) O) B) = 42

scoring schemes
distance / similarity between substructures
probabilities (for predicting based on probabilities)
free energy (for thermodynamic folding of molecules)
candidate representation (as strings / trees / graphics)
candidate counts

building blocks of RNA

1 algebra pretty implements
2 FoldRNA(alphabet = char, answer = string) {
3 string sr(Subseq lb,string e,Subseq rb) {
4 string res;
5 append(res, ’(’);
6 append(res, e);
7 append(res, ’)’);
8 return res;
9 }
10 string hl(Subseq lb,Subseq region,Subseq rb) {
11 string res;
12 append(res, ’(’);
13 append(res, ’.’, size(region));
14 append(res, ’)’);
15 return res;
16 }
17 ...
18 choice [string] h([string] i) { return i; }
19 }

algebra pretty
we evaluate
sr(C, sr(C, ml(A, sr(C, hl(C, UUUU, G), G),
 sr(C, bl(AUA, hl(C, CCC, G)), G),
 U),
 G),
 G) = "((((....))(...(...))))"

algebra count
algebra	count	mycount	auto	count

we evaluate
sr(C, sr(C, ml(A, sr(C, hl(C, UUUU, G), G),
 sr(C, bl(AUA, hl(C, CCC, G)), G),
 U), G), G) = 1

programs are grammars

where do we stand?
we know now:
- how to represent candidates
- how to score and choose
we still need to know:
- the candidates for a given input (problem instance)
We do this using tree grammars!!

string grammar: describes a language of strings.

tree grammar: describes a language of trees (candidates).
with “input strings” as their yield sequences.

programs are grammars
1 grammar alignment uses Align(axiom = ali) {
2 ali = replace(<CHAR, CHAR>, ali) |
3 delete(<CHAR, EMPTY>, ali) |
4 insert(<EMPTY, CHAR>, ali) |
5 empty(<EMPTY, EMPTY>) # h;
6 }

programs are grammars
ali → replace | delete
 / | \ | \
 CHAR ali CHAR CHAR ali

 insert | empty
 / | |
 CHAR ali EMPTY

problem specification
Definition An Algebraic DP algorithm is specified by
- an evaluation signature Σ
- a tree grammar G over Σ
- a concrete evaluation algebra A with an objective function h
satisfying Bellman’s Principle

bellman’s principle of optimality
Richard Bellman (1964):
“An optimal solution can be composed solely from optimal
solutions to sub-problems.”

That’s a requirement, not a theorem!!

bellman’s principle of optimality
Richard Bellman (1964):
“An optimal solution can be composed solely from optimal
solutions to sub-problems.”

That’s a requirement, not a theorem!!

Proof: by proving distributivity of choice over scoring:

Moving the choice function around
in the formula should not affect the
final result list.

bellman’s principle of optimality
Richard Bellman (1964):
“An optimal solution can be composed solely from optimal
solutions to sub-problems.”

That’s a requirement, not a theorem!!

Proof: by proving distributivity of choice over scoring:
h(f (X, Y)) = h(f (h(X), h(Y)))

phase amalgamation

 grammar algebra input

Conceptual view:
 Phase 1: yield parsing
 Phase 2: evaluation & choice
Reality: Both phases are merged

rnafold(basepair,"ACAGGUUGU")⇒3

products are fun !!!

where do we stand?
We can
- describe algorithms on an abstract level
- generate correct and efficient code
- independently vary tree grammar or evaluation algebra
- run one analysis at a time

where do we stand?

….
How about doing several analyses at a time?
- find best score and print the best scoring candidate
- best RNA structure for each different shape of a molecule

Product algebras A := A1 * A2
 compute answer-value pairs
 using functions f and h
 - f1 * f2 component wise
 - h1 * h2 dependent

products of algebras

semantics of *
Phase 1 computes all candidates via f1*f2
Phase 2 applies h1*h2 once in the end
Reality: everything is interleaved! (again!)

No programming, no debugging, but proof obligation with *:
A1 * A2 must satisfy Bellman’s Principle

- Number of co-optimal solutions basepair*count
- Easy candidate output (backtracking) basepair*pretty
- Classified DP shape*count, shape*bpmax
- Ambiguity checking pretty*count
- Sampling A | B
- Products of products...

fun with products

tools developed with ADP
Tools
- RNAhybrid
- pknotsRG
- RNAshapes
- Locomotif
- KnotInFrame
- RNAsifter

Problems solved
- miRNA target prediction
- pseudoknot folding
- abstract shape analyis
- consensus structure prediction
- probabilistic shape analysis
- RNA motif search description and search
- programmed ribosomal frame shift detection
- filtering out unproductive Rfam searches

what’s cool about
Algebraic DP?

Advantages:
- our work is reduced to the creative apects
- we explore ideas rather than debug code
- we create re-usable and reliable components
- we turn tricks into techniques
- we make DP easier to learn
Disadvantages:
- textbooks use old-fashioned recurrences ;)
- limited to sequence-like data, decomposition into subwords

remember reverse engineering of42
tell me your favorite DP problem!!

sschirme@gmail.com
@linse on twitter

Thank you! <3

Bellman’s Gap Cafe http://gapc.eu	
The compiler 	http://gapc.eu/compiler.html	
Literature http://gapc.eu/literature.html

resources

http://gapc.eu/literature.html

