
The Hidden Nature

of Data

BOBKonf 2017

Martin Kühl, @mkhl

Motivation

Paul Chiusano and Rúnar Bjarnason

One might object that algebraic data

types violate encapsulation by making
public the internal representation of a type.
[…] Exposing the data constructors of a

type is often fine, and the decision to do
so is approached much like any other
decision about what the public API of a
data type should be.

But

Stackless Scala With Free
Monads, Rúnar Bjarnason
sealed trait Free[S[+_],+A] {
 private case class FlatMap[S[+_],A,+B](
 a: Free[S,A],
 f: A => Free[S,B]) extends Free[S,B]
}

So when is exposing our data
constructors not fine?

And what does that mean for when we
should use pattern matching?

Example

Example: List
case object Nil extends List[Nothing]
case class Cons[+A](head: A, tail: List[A]) extends List[A]

sealed trait List[+A] {
 def fold[B](z: B)(f: (A, B) => B): B = this match {
 case Nil => z
 case Cons(h, t) => f(h, t.fold(z)(f))
 }

 def append[B >: A](that: List[B]): List[B] =
 this.fold(that)(Cons(_, _))

Example: List + Append
case object Nil extends List[Nothing]
case class Cons[+A](head: A, tail: List[A]) extends List[A]
private case class Append[+A](left: List[A], right: List[A]) extends List

sealed trait List[+A] {
 def fold[B](z: B)(f: (A, B) => B): B = this match {
 case Nil => z
 case Cons(h, t) => f(h, t.fold(z)(f))
 case Append(l, r) => l.fold(r.fold(z)(f))(f)
 }

 def append[B >: A](that: List[B]): List[B] = (this, that) match {
 case (_, Nil) => this
 case (Nil, _) => that
 case _ => Append(this, that)
 }

Problems

It breaks pattern matching
[warn] /path/to/Service.scala:28: match may not be exhaustive.
[warn] It would fail on the following input: Append(_, _)
[warn] def go(as: List[A], count: Int): Int = as match {
[warn] ^

It violates “No Confusion”

No Junk, No Confusion

— Joseph A. Goguen

It changes our algebra

Advice

Be conservative in what you do, be liberal
in what you accept from others.

— Jon Postel

Is your library providing a language or
interpreting one?

If you are providing a language, try to
expose its structure

If you are interpreting a language, try
consuming interfaces

If you are introducing interfaces, don’t
replace existing structures

Changes to existing structures should
affect downstream code

Pattern matching can be nested

Pattern matching can be nested
case (Some(Foo(x)), Right(Bar(y))) => …

More flexibility in defining types
case class Prog[A](get: Free[Lang, A])

vs.
type Prog[A] = Free[Lang, A]

Pattern matching
Try to use and support it

Martin Kühl

Thank you!

Questions?

Comments?

@mkhl

martin.kuehl@innoq.com

