Movies as Programs

[eif Andersen

Accessibility

(prominent code)

(some code)

f_/

5

Under the hood

[.
‘ Elack box capability-based sandboxing for executables

+ 3 feww new capability-safe systemn calls
0 #lang shill/cap:

Capahility-safe safe subser of racket/base

+aset!-transformer to control mutation

+arequire-transformer to only import @shill code

+ a capability-based flasysrem library using tfi/unsate
iy CONTFACTS USING rackaet/contract

pm reader

One down

One down

19 more to go...

We Need Automation

The Landscape

Tool Example Experience

Plugin-InS Blender Script, AE Script
Ul Automation Apple Seript
(Macros)

Shell Scripts FFmpeg, AVISynth

The Landscape

Tool Example Experience

Plugin-InS Blender Script, AE Script -
Ul Automation Apple Seript
(Macros)

Shell Scripts FFmpeg, AVISynth

The Landscape

Tool Example Experience

Plugin—Ins Blender Script, AE Script -
Ul Automation Apple Script o
(Macros)

Shell Scripts FFmpeg, AVISynth

The Landscape

Tool Example Experience

Plugin—lns Blender Script, AE Script -

Ul Automation Apple Script X
(Macros)

Shell Scripts FFmpeg, AVISynth —

We have a problem...

We have a problem...

We want to solve it in the
problem domain's own language...

We have a problem...

We want to solve it in the
problem domain's own language...

DSLs are the
"Ultimate Abstraction"

Paul Hudak

M
ak
ealD
S
[
|

A

Producers Filters

Producers

Producers

render : Producer -

Producers

render : Producer -

clip : String — Producer

Producers

render : Producer -

clip : String — Producer

(render (clip "demo.mp4'")) =

Filters

Filter

Producer fe-==========ecccccccccccnnananas

(attach-filter bunny-clip (sepia-filter))

(attach-filter bunny-clip (sepia-filter))

Producer

Time

(playlist (clip "Jjumping.mp4d')
(clip "flying.mp4"))

Producer

Time

Pro| Transition

Time

(playlist (clip "jumping.mpéd")
(fade-transition 1)
(clip "flying.mp4"))

Layers

Producer

Producer

Producer

Producer

Time

SIQA®RT

Time

(define WIDTH 1920)
(define HEIGHT 1080)
(multitrack (color "black")
(overlay-merge 0 0 (/ WIDTH 2) HEIGHT)
(clip "running.mp4")
(overlay-merge (/ WIDTH 2) O (/ WIDTH 2) HEIGHT)
(clip "flying.mp4d"))

Producers Filters

mosaic.vid

#lang video
;; Create a mosaic of four videos
(for/vertical ([i (in-range 2)])
(for/horizontal ([j (in-range 2)])
(external-video "branded.wvid"
(clip "logo.png'")
(clip (format "~aX~a.mp4" i j)))))

mosaic.vid

#lang video
;; Create a mosaic of four videos
(for/vertical ([i (in-range 2)])
(for/horizontal ([j (in-range 2)])
(external-video "branded.wvid"
(clip "logo.png")
(clip (format "~aX~a.mp4" 1i 3Jj)))))

Primiti
(ves y

mosaic.vid

#lang video
;; Create a mosaic of four videos
(for/vertical ([i (in-range 2)])
(for/horizontal ([j (in-range 2)])
(external-video "branded.wvid"
(clip "logo.png'")
clip (format "~aX~a.mp4" i j)))))

|

KLis’c Comprehensions}

mosaic.vid

#lang video
;; Create a mosaic of four videos
(for/vertical ([i (in-range 2)])
(for/horizontal ([j (in-range 2)])
(external-video "branded.vid"
(clip "logo.png")
(clip (format "~aX~a.mp4" i j)))))

/ Modules}

mosaic.vid

#lang video
;; Create a mosaic of four videos
(for/vertical ([i (in-range 2)])
(for/horizontal ([j (in-range 2)])
(external-video "branded.vid"
(clip "logo.png")
(clip (format "~aX~a.mp4" i j)))))

branded.vid

#lang video/1lib
;; Generate a branded video
(define-video (branded logo wvid)
logo
(fade-transition 1)

(multitrack logo
(overlay 0 0 100 100)

vid))

mosaic.vid

#lang video
;; Create a mosaic of four videos
(for/vertical ([i (in-range 2)])

tal ([J (in-range 2)])

Functions ideo "branded.wvid"
go.png")
(clip (\ rmat "~aX~f.mp4d" i j)))))

\ / branded.vid

#lang video/1lib
;; Generate a lprangéd wvideo

(define-video (branded logo vid)
logo
(fade-transition 1)
(multitrack logo
(overlay 0 0 100 100)
vid))

mosaic.vid

#lang video
;; Create a mosaic of four videos
(for/vertical ([i (in-range 2)])
(for/horizontal ([j (in-range 2)])
(external-video "branded.wvid"
(clip "logo.png'")
(clip (format "~aX~a.mp4d" i jJ)))))

branded.vid

#lang video/lib
;; Generate a branded wvideo

(define-video (branded logo wvid)
logo
(fade-transition 1)

(multitrack logo
(overlay 0 0 100 100)

vid))

#lang video
;; Create a mosaic of four videos
(for/vertical ([i (in-range 2)])
(for/horizontal ([j (in-range 2)])
(external-video "branded.vid"
(clip "logo.png")
(clip (format "~aX~a.mp4" i 3j)))))

#lang video
(clip "dragon.mp4")
;; Create a mosaic of four videos
(for/vertical ([i (in-range 2)])
(for/horizontal ([j (in-range 2)])
(external-video "branded.vid"
(clip "logo.png")
(clip (format "~aX~a.mp4" i 3j)))))

Implementing Video = Manual Editing
+ Editing

From Libraries to

Languages

We make DSLs using
Linguistic Inheritance

We make DSLs using
Linguistic Inheritance

We make DSLs using
Linguistic Inheritance

We make DSLs using

w 1

CRe-export construct

We make DSLs using

h o A |

CRe-export construct

[Remove construct

We make DSLs using

h o A |

(Re-export construct

[N ew construct

[Remove construct

We make DSLs using

Y e [« ©® Y 1 ® 4

(Re-export construct

7

™\

\
|
1

New construct

| |ViFo Implementatjon
(Remove construct >T

(Change construct |
Racket

(for/playlist ([scene (in-list scene-list)])
(multitrack scene

(overlay-merge 10 10 300 300)
(clip "logo.mp4'")))

(define (for/playlist seq body)
(apply playlist
(for/list ([i (in-list seq)])
(body 1))))

(define (for/playlist seq body)
(apply playlist
(for/list ([i (in-list seq)])
(body 1))))

> (for/playlist (list (clip "a.mp4d")
(clip "b.mp4"))
(A (scene)
(multitrack scene
(overlay-merge 10 10 300 300)
(clip "logo.mp4"))))

(define-macro (for/playlist seq . body)
" (apply playlist
(for/list ,seq

(for/playlist ([s (list (clip "a.mp4d"))])
(multitrack ...))

—> elaborates

(apply playlist
(for/list ([s (list (clip "a.mp4d"))])
(multitrack)))

(for/playlist ([s (list (clip "a.mp4d"))])
(multitrack ...))

—> elaborates
(apply playlist

(for/list ([s (list (clip "a.mp4d"))])
(multitrack)))

— evaluates

#<playlist>

(let ([playlist 42])
(for/playlist))

(let ([playlist 42])
(for/playlist))

—> elaborates

(let ([playlist 42])
(apply playlist))

(let ([playlist 42])
(for/playlist))

—> elaborates

(let ([playlist 42])
(apply playlist))

—> evaluates

(define-macro (for/playlist seq . body)
" (apply playlist
(for/list ,seq

> (let ([playlist 42])
(for/playlist ([s (list (clip "a.mp4"))])
(multitrack s
(overlay-merge 10 10 300 300)
(clip "logo.mp4"))))

(define-syntax-rule (for/playlist seq
body ...)
(apply playlist
(for/list seq
body ...)))

(define-syntax-rule (for/playlist seq
body ...)
(apply playlist
(for/list seq
body ...)))

> (let ([playlist 42])
(for/playlist ([s (list (clip "a.mp4d"))])
(multitrack s
(overlay-merge 10 10 300 300)
(clip "logo.mp4"))))

lang-extension.rkt

#lang racket
(provide for/playlist)
(define-syntax-rule (for/playlist seq
body ...)
(apply playlist
(for/list seq
body ...)))

lang-extension.rkt

#lang racket
(provide for/playlist)
(define-syntax-rule (for/playlist seq
body ...)
(apply playlist
(for/list seq
body ...)))

user-prog.rkt

#lang racket
(require "lang-extension.rkt"”
(define playlist 42)
(for/playlist ([i (list (clip "a.mp4d")
(clip "b.mp4"))])
(multitrack))

lang-extension.rkt

#lang racket
(provide for/playlist)
(define-syntax-rule (for/playlist seq
body ...)
(apply playlist
(for/list seq
body ...)))

user-prog.rkt

#lang racket
(require "lang-extension.rkt"”
(define playlist 42)
(apply playlist
(for/list ([1i (list (clip "a.mp4d")
(clip "b.mp4d4"))1])
(multitrack)))

Non-Local

Language Features

#lang video

logo
(define 1logo

talk
(define talk

logo

#lang video

(provide wvid)

(define logo ...)
(define talk ...)

(define vid (playlist
logo
talk
logo))

Interposition Points

sapp
smodule-begin

(+ 1 2)
—> elaborates

(#%app + 1 2)

#lang video (module anon video
(#$module-begin

logo logo
talk
talk parses » (define logo
c..)
;> Where (define talk
(define logo ce2)))

co.)
(define talk
.)

(module anon wvideo (module anon racket

(#%module-begin (#%module-begin
logo (require vidlib)
talk. elabOrateS (define logo
(define logo > cee)

c.) (define talk
(define talk L))
ce:))) (vid-begin vid
logo

talk)))

#lang racket

(provide (rename-out [video-module-begin

#%module-beginy),

(define-syntax-rule (video-module-begin nogy .. .)
.- #%module-begin

(require syntax/wrapping-modbegq)
(define-syntax video-module-begin
(make-wrapping-module-begin ...))

(require syntax/wrapping-modbegq)
(define-syntax video-module-begin
(make-wrapping-module-begin ...))

#lang racket/base
run time code

(define-syntax macro-name
compile time code

run time code ...))

(define-syntax i1d expr)

id : run time binding

expr : compile time expression

Movies as Programs:

A Tower of Languages

Racket

"V

1

We have avproblem...

1

We have avproblem...

We want to solve it in the
problem domain's own language...

1

We have avproblem...

We want to solve it in the
problem domain's own language...

Make a DSL!

An FFI DSL

int av_frame get buffer (AVFrame *frame,
int align);

(Scheme Workshop, 2004)

An FFI DSL

int av_frame get buffer (AVFrame *frame,
int align);

(define-ffmpeg av-frame-get-buffer
(fun [frame : av-frame] [align : int]
-> [ret : 1int]
-> (maybe-error? ret)))

(Scheme Workshop, 2004)

An Object DSL

(define-ffmpeg av-frame-alloc
(define-ffmpeg av-frame-free

(define-constructor clip video
av-frame-alloc
av-frame-free ...)

.)

Video FFI

OpenGL
Racket

DOCVMENTATION

We have avproblem...

DOCVMENTATION

We have avproblem...

We want to solve it in the
problem domain's own language...

DOCVMENTATION

We have avproblem...

We want to solve it in the
problem domain's own language...

Make a DSL!

A Documentation DSL

The Video Lanquage Guide

by Leif Andersen

#lang video package: video
Video Language (or VidLang, sometimes referred to as just Video) is a DSL for

editing...videos. It aims to merge the capabilities of a traditional graphical non-linear
video editor (NLVE), with the power of a programming language. The current interface is

(ICFP, 2009)

A Documentation DSL

The Video Language Guide

by Leif Andersen

#lang video package: video

Video Language (or VidLang, sometimes referred to as just Video) is a DSL for
editing...videos. It aims to merge the capabilities of a traditional graphical non-linear
video editor (NLVE), with the power of a programming language. The current interface is

#lang video/documentation
@title{Video: The Language}
@ (defmodulelang video)

Video Language (or VidLang, sometimes referred

to as just Video) is a DSL for editing...videos.
It aims to merge the capabilities of a traditional

(ICFP, 2009)

® _©

talk.rkt - DrRacket

talk.rkt v (define ...)¥

sl Check Syntax 54 Debug @2l Macro Stepper Wl Run > Stop

1
2

4

#lang video
(cfp "recordi

procedure

-> producer?

(clip file
[#:properties properties
#:filters filters])
file : (or/c path-string? path?)

properties : (hash/c string?

filters :

(listof filter?) =

any/c) = (hash)
)

read more...

Determine language from source v

3:3 211955MB|[¢ e

Video FFI

OpenGL

Racket

lypes

(clip "clip.mp4d"
#:start O
#:end 50)

(cut-producer (clip "clip.mp4d"
#:start O
#:end 50)
#:start O
#:end 100)

(cut-produ "clip.mp4"
#:start O

#:end 50)

t O

100)

A Typed DSL

m >=n

(Producer m) <: (Producer n)

TYPES

We have avproblem...

TYPES

We have avproblem...

We want to solve it in the
problem domain's own language...

TYPES

We have avproblem...

We want to solve it in the
problem domain's own language...

Make a DSL!

A Typed DSL

CLIP
I'- f : File |f| = n

I'- (clip f) : (Producer n)

(POPL, 2017)

A Type Implementation DSL

CLIP
' f : File |f| = n

I'- (clip f) : (Producer n)

(define-typed-syntax (clip £f) >
[£ > <« File] #:where n (length f)

[(untyped:clip f) = (Producer n)])

(POPL, 2017)

0 R
H 4,

D
Gq' I/}b,eo

Turnstile

DS
We have a*problem...

DS
We have a*problem...

We want to solve it in the
problem domain's own language...

DS
We have a*problem...

We want to solve it in the
problem domain's own language...

syntax-parse
A DSL for making DSLs

(ICFP, 2010)

(define-syntax-rule
(define/playlist (name args
body ...)
(define name
(A (args ...)
(playlist body ...))))

(define-syntax-rule
(define/playlist (name args
body ...)
(define name
(A (args ...)
(playlist body ...))))

> (define/playlist (double A)
A
A)

(define-syntax-rule
(define/playlist (name args
body ...)
(define name
(A (args ...)
(playlist body ...))))

> (define/playlist (double (A B C))
A)

(define-simple-macro
(define/playlist header: function-header
body ...)
(define header.name
(A header.args
(playlist body ...))))

(define-simple-macro
(define/playlist header:function-header
body ...)
(define header.name
(A header.args
(playlist body ...))))

> (define/playlist (double A)
A
A)

(define-simple-macro
(define/playlist header:function-header
body ...)
(define header.name
(A header.args
(playlist body ...))))

> (define/playlist (double (A B C))
A)

s]j)ped[,
127@0

Turnstile

syntax-parse

[NON) conference-lib.vid - DrRacket

conference-libvid ¥ (define ...)¥ Preview Video [Check Syntax (4 Debug @] Macro Stepper Pl Multi-File Coverage m Run [> Stop il

1 | #lang video
2
3 | (provide conference-talk)
4
5 | (define (conference-talk video slides audio offset)
6 (attach-transition raw-video
7 (fade-transition #:length 50 #:in splash #:out _)
8 (fade-transition #:length 50 #:in _ #:out splash2))
9 video
S id S 100 200 300 400 500
gefinex LBl LU L LT PV T] b
10 (definex _ (attach-transition _ (composite-transition @ @ 1/4 1/4
11 #:top video
12 #:bottom slides)))
13 (define splash (image "splash.png"))
14 (define splash2 (copy-video splash))
15 splash u splash2
(playlis'®? (blank P¥fset) atlio 40 500
(define raw—video I PP (Plank Brfset) i) | ™ L 1 T 111,
16
Determine language from source™ 17:0 375.01 MB |:] ‘%.

Editor-Oriented
Programming

The Future...

begin-for-syntax

define-syntax

begin-for-editor

define-editor

#lang editor

(define-editor video-editor

(play

B,

L~

Jq'eo

Turnstile

syntax-parse

slides.rkt - DrRacket

slides.rkt v (define ,.)v Check Syntax (24 Debug @il Macro Stepper &'l Run > stop
1 | #lang at-exp slideshow \\

957 #:carrot-offset -20) -
958
959 | (let ()
960 (define av-frame-get-buffer
261 (let ()
962 (define x (code av-frame-get-buffer))

963 (cc—superimpose
964 (colorize (filled-rectangle (+ (pict-width x) 5)
965 (+ (pict-height x) 5))
966 "yellow")
967 X)))
968 (define mlt-ffi-code
969 (scale
970 (parameterize ([code-italic-underscore-enabled #f])
971 (code (define-ffmpeg #,av-frame-get-buffer
972 (fun [frame : av-framel [alian : intl
o
Detarmina l3nguags from source v 662:14 2300.88MB|_| e

https://lang.video

_ :" B e S

« C @ (i) @& https://lang.video a0 e @ %7 | Q Search mn & 0O @ @O

(¢
Video

A Language for Making Movies

Video is a language tor making movias. It combnas the power of & tractional
vicen oditor with 1 capabites of a full pngmmming Enguage. Vicen
ntagrates with the Racket ccosystem and aextensicns for Drfiackat to
transtorm it ~te & non-linaar vices edito,

Get Started

Follow us on Twitter
Get Video Swag

https://lang.video

index.scrbl - DrRacket

incax.sorbl v (gatin ..)v Check Syntax [S4 Debug @ Macro Stepper '] Run > Stop [l
1 | #lang reader "website.rkt"
2
3 | @(require "logo/logo.rkt")
4
@page [#:title "Main"1[§
6 | @div[class: "jumbotron"]{
7 @div[class: "container"]{
8 @div[class: "splash"]l{
9 @center{@img[src: big-logo alt: "Video" height: 200 wic
10 @center{@h1{Video}}
11 @h2{A Language for Making Movies}
12 @p{@b{Video} is a language for making movies. It combir
13 the power of a traditional video editor with the
14 capabilities of a full programming language. Video
15 integrates with the Racket ecosystem and extensions fc
1A NrRarket tn trancfnrm it intn a non=linear viden editr
Dstarmina l3nguags from source v 5:21 16360MB|_| e

Fear of Macros

BEAUTIFUL RACKET

Languages as Libraries *

Sam Tobin-Hochstadt

Northeastern University

Vincent St-Amour
Northeastern University

Abstract

Programming language design benefits from constructs for extend-

ing the syntax and semantics of a host language. While C's string-

based macros empower programmers (o introduce notational short-

hunds, the parser-level macros of Lisp encourage experimentation

with domain-specific languages, The Scheme programming lun-

guage improves on Lisp with macros that respect lexical scope.
The design of Racket—a descendant of Scheme—goes even fur-

ther with the introduction ol & full-lc

mantics of the lunguage. A Racket ¢

add constructs that arc indistinguisl

Ryan Culpepper
University of Utah

Matthew Flatt

University of Utah

Matthias Felleisen
Northeastern University

collectors and thread abstractions, that these platforms offer. Both
platforms also inspired language design projects that wanted to ex-
periment with new paradigms and to exploit existing frameworks;
thus Clojure, a parallclism-oricnted descendant of Lisp, and Scala,
a multi-paradigm relative of Java, target the JVM, while F# is built
atop .NET. In all of these cases, however, the platform is only a
target, not a tool for growing languages. As a result, design experi-

samAas

Composable and Compilable Macros

You Want it When?

Matthew Flatt
University of Utah

Abstract

Many macro systems, especially for Lisp and Scheme, allow macro
transformers to perform general computation. Moreover, the lan-
guage for implementing compile-time macro transformers is usu-
ally the same as the language for implementing run-time functions.

A oo il ot oL bl b leee e leee bt beed o WD ...

pattern-matching transformations, but may perform arbitrary com-
putation during expansion [12, 17,3, 24,26, 1]. In addition, macros
may manipulate abstract syntax enriched with lexical information
instead of manipulating raw source text [15, 2, 4, 8], which means
that macro-defined constructs can be assigned a meaning indepen-
dent of details of the macro’s expansion (e.g., whether the macro

LI s T TR [rrrs NUTTIT P W) Prppeppnpers R P rrup e TP TR PNy | B | Sy

Thanks For Watching

http://lang.video
@videolang

We make DSLs using
Linguistic Inheritance

