m) Componolit

Secure Systems Engineering

Combining program verification
with component-based architectures

Alexander Senier
BOB 2018

Berlin, February 23™, 2018

m) Componolit

Secure Systems Engineering

About
Componolit

m Topic: Secure component-based systems
m Focus: Mobile devices, industrial security
m Principles

= Free software

= Open development

= Security-by-design

23.02.2018

m) Componolit

Secure Systems Engineering

What happens when we use what's best?

23.02.2018

What’s Best? 6 COITIpOI']O”t

Mid-901es: DOS+Pascal

23.02.2018

Secure Systems Engineering

program WriteName;

var
1 : Integer; {variable to be used for looping}
Name : String; {declares the variable Name as a string}
begin
Write('Please tell me your name: ');
ReadLn(Name); {Return string entered by the user}
for 1 := 1 to 100 do
begin
WriteLn('Hello ', Name)
end;
readln;
end.

What’'s Best? 6 COmp0r110|‘It
End Of QOies: Linux.l_c Secure Systems Engineering

if ((err = SSLHashSHA1l.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail,;
... other checks ...
fail:
. buffer frees (cleanups)
return err;

23.02.2018

What’s Best? 6 Componolit

Mid 2000s: Linux/FreeBSD/NetBSD+Ada secure systems Engineering

type 1S range 1 .. 31;
type 1s range 1 .. 12;
type 1s range 1800 .. 2100;
type 1s mod 24;
type is (Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday);
type is
record

Day : Day_type;

Month : Month_type;

Year : Year_type;

end record;

23.02.2018

m) Componolit

Secure Systems Engineering

What’s Best?
Today and in the Future

That’s what this talk i1s about.

23.02.2018

m) Componolit

Secure Systems Engineering

“Use what’s best”
—

“Trustworthy systems”

23.02.2018

m) Componolit

Secure Systems Engineering

=1 “Use what'’s best”

23.02.2018

What’s Best?
Our answer (so far) - Outline

m Problem
= Unsafe programming languages
= Monolithic systems

m Solution
= Component-based systems
= Program verification

m Future
= Verification of high-level models
= Protocol verification

23.02.2018

m) Componolit

Secure Systems Engineering

10

oroblen (Componolit

- S Syst E
Unsafe Programming Languages ecure Systems Engineering

m Stragefright (July 2015) Stagefright malware is back! "Worst
Android bug in history' returns for a

= Billions of devices affected third time and could infect a BILLION
= Remote code execution, privilege phones
. « Stagefright bug lets attackers take control of older Android handsets
e S C a'l at I O n « Notorious bug is back for a third time, security research firm claims
. . . « Israel-based NorthBit security researchers seem to show the hack in action
= AS e aSy aS S e n d | n g Vl d e O/ I m ag e « [tonly affects handsets running software older than Android 4.0 and people are

being told to upgrade, and install anti-malware apps

m Problem not solved since

By SARAH GRIFFITHS FOR MAILONLINE
PUBLISHED: 10:59 BST, 21 March 2016 | UPDATED: 23:17 BST, 21 March 2016

= > 350 bugs (critical/high) e g = 207 e
Integer overflows) Shares View comlle

Just as stage fright can plague an actor repeatedly, a notorious Android bug that
goes by the same name, is back for a third time.

Integer underflows
The 'worst Android vulnerability in the mobile OS history' with the potential to infect
- B uﬁ:er OVE rﬂ OWS one billion handsets, allows cybercriminals to hack an Android smartphone in less

than 10 seconds.

[H eap Ove rﬂ OWS T.ht.a .newest version of Stagefright, §I§o referrgd 'to as Met.apho.r, t.ricks a user into
visiting a hacker's web page, containing a malicious multimedia file that when

23.02.2018

m) Componolit

Secure Systems Engineering

Problem
Monolithic Systems

m Typical System Architecture

B Most systems monolithic today

M - = Complex features
- = Large, shared services
Framework
X = Weak isolation

Media

Framework
Bluetooth Wifi Service m Consequences
Service Service Y)
= Large Trusted Computing Base
~_LinuxKernel = High error probability
(Networking, Dewces D'rlvers,.F.lle Systems, _ _
Encryption, Security Policies, ...) » Unrestricted error propagaﬂon

23.02.2018 12

Solution
Our Constraints

® Minimal Trusted Computing Base
m System/low-level programming
m Low overhead

23.02.2018

m) Componolit

Secure Systems Engineering

13

Solution
The Genode 0S Framework*

m) Componolit

Secure Systems Engineering

m Hierarchical System
B Recursive system structure Architecture

= Root: Microkernel
= Parent: Responsibility + control
= |solation is default
= Strict communication policy
m Everything is a user-process
= Application
= File systems
= Drivers, Network stacks

23.02.2018 *) https:/lgenode.org

TR
e
.

14

m) Componolit

Secure Systems Engineering

Solution
Minimal Trusted Computing Base

m Per-application TCB
m Trusted Computing Base

= Software required for security ! ,

= Parents in tree ! , ! ,

= Services used

m TCB reduction .'\’ /. ,
= Application-specific .\’ ! ’
" m

= Example: File system

23.02.2018 15

m) Componolit

Secure Systems Engineering

Does that mean we have to reimplement everything?

23.02.2018

Architecture for Trustworthy Systems 6 COIT]pOﬂO“t

Strategy #1: Policy Objects

m Can’t reimplement everything
m Solution: software reuse
= Untrusted software (gray)
= Policy object (green)
= Client software (orange)
m Policy object
= Establishes assumptions of client
= Sanitizes
= Enforces additional policies

23.02.2018

Secure Systems Engineering

m Policy objects

Protocol validator

(e.g. TLS)
B =
Network Web
Stack browser

17

Architecture for Trustworthy Systems 6 goTtggpglllnt
Strategy #2: Trusted Wrappers S e

m Trusted wrapper

m Untrusted software (gray)
= E.g. disk, file system, cloud

VPN
m Trusted wrapper Component
= Mandatory encryption
m Client software (orange) .
= No direct interaction with Network Web
untrusted components Stack e

= Minimal attack surface

23.02.2018

18

Architecture for Trustworthy Systems 6 goTtggpglllnt
Strategy #3: Transient components s gineerng

B Transient component
m Untrusted software
= E.g. Media decoder

Controller

= No chance to get this right!

B Transient component |
= Temporarily instantiate untrusted i =

software for single file/stream ndony T imple

= Expose only simple interfaces Network Decoder Audio Player
(e.g. PCM audio)

= Cleanup on completion

23.02.2018

19

m) Componolit

Secure Systems Engineering

But, what if trusted components fail?

23.02.2018

m) Componolit

Secure Systems Engineering

High-assurance Implementation
A simple task: Calculating abs()

// Calculate absolute of X
1 int abs_value (int X)

2 { // Let’s try abs_value()
3 if (X >0) { abs_value(-12345) = 12345
4 return X; abs_value(56789) = 56789
5 } else { abs_value(0) - 0
6 return -X; abs_value(-2147483648) - -2147483648
7 Iy
8 }
23.02.2018

21

High-assurance Implementation

At a glance: SPARK*

m) Componolit

Secure Systems Engineering

B Language + verification toolset B Depth of verification is flexible

= Imperative, object-oriented

= Data and control flow analysis

= Designed for error avoidance = Dependency contracts

= Strong type system
= Formal contracts

23.02.2018

= Absence of runtime errors
= Functional correctness

*) http:/Ispark-2014.org

22

m) Componolit

Secure Systems Engineering

High-assurance Implementation
SPARK benefits

B Well-suited for system-level development
= Compiled using GCC (via GNAT Ada frontend)
= Supports runtime-free mode (via profiles)
= Integration of full Ada and bindings to C
m Used in various critical and system-level projects
= Muen Separation Kernel (https://muen.sk)
= Satellite software, air traffic control, secure workstation

23.02.2018

https://muen.sk/

m) Componolit

Secure Systems Engineering

High-assurance Implementation
Our previous example

1 function Abs_Value (X : Integer) return Integer

2 with

3 -- Uncomment the following line to prove
4 -- Pre => X /= Integer'First,

5 Post => Abs_Value'Result = abs (X)

6 is

7 begin

8 if X > 0 then

9 return X;

10 else

11 return -X;

12 end if;
13 end Abs_Value;

Proving. ..
Phase 1 of 2: generation of Global contracts ...

Phase 2 of 2: flow analysis and proof ...
abs_value.adb:11:14: medium: overflow check might fail (e.g. when Abs_Value'Result = 0 and X = -2147483648)

One error.

23.02.2018 24

m) Componolit

Secure Systems Engineering

High-assurance Implementation
Bitwise swap using XOR

1 with Interfaces; use Interfaces;

2

3 procedure Bitwise_Swap (X, Y : in out Unsigned_32) with
4 Post == X = Y'0ld and Y = X'01d

5 is

6 begin

7 X = X xor Y,

8 Y := X xor Y;

9 -- Uncomment the following line to prove
10 -- X = X xor Y,

11 end Bitwise_Swap;

Proving. ..
Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...

bitwise swap.adb:4:11: medium: postcondition might fail,
cannot prove X = Y'old (e.g. when X = 0 and Y'Old = 4294967295)
One error.

23.02.2018 25

m) Componolit

Secure Systems Engineering

Let’s put it together.

23.02.2018

m) Componolit

Secure Systems Engineering

Componolit Platform
Baseband firewall - Architecture

%Y

Genode (base system)

Phone

23.02.2018 27

m) Componolit

Secure Systems Engineering

Componolit Platform
Baseband firewall - Implementation

6 Componolit

23.02.2018

m) Componolit

Secure Systems Engineering

What’'s Best?
Future: More Verification!

m Interactive theorem proving m Protocol verification
= Functional specification in = See ourselves implementing
|Isabelle/HOL communication protocols...
= Prove correspondence with = ...over and over again

SPARK program = Goal

= Closed specification of
communication protocols

= Verification of protocol properties
using temporal logic

= Generation of code

Interested In ideas!

23.02.2018 29

m) Componolit

QueStiOI’lS? Secure Systems Engineering

Alexander Senier
senier@componolit.com

@Componolit - componolit.com - github.com/Componolit

23.02.2018

mailto:senier@componolit.com

2017-02-03

m) Componolit

Secure Systems Engineering

31

Stagefright 6 Componollt

Bugs rated critical/high since 2015

Secure Systems Engineering

STAGE. A~ARIGHT

40
35

30
25

20
15
10

5
0

2015/08 2015/11 2016/02 2016/05 2016/08 2016/11 2017/02 2017/05 2017/08 2017/11

s RUIETIRUE

2017-02-03

Media-related Android vulnerabilities (Critical/high, based on https://source.android.com/security/bulletin/)

32

