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Resistor cube

Wanted:
Total resistance
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Ohm's law
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Kirchhoff's current law

0=—lKkoot+h10+1z10
0=—-Kkoi1t+N11-1z10
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Kirchhoff’s voltage law

= —Vo,00+ V1o,
—V1,00+ V110,
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Solution

U
Rtotal = ILmll (1)
tota.
V; -V
1,1,1 0,0,0 (2)

Itotal
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Matrix blocks

0 0 ”(Io,o
A= 0 R V
U070,0 | 0

m R: encodes Ohm'’s law
m V: encodes Kirchhoff’s voltage law

m |: encodes Kirchhoff's current law
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Matrix symmetry

0 0
A= 0 R
up00 |

Rx 0,0
Rx 0,1

1=V’

Rz11
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Matrix features

Matrix A is
B symmetric,
m composed from blocks,
m and every block has a special sub-structure.

Can we represent this with Haskell’s type system?
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Solution of simultaneous linear equations

Specialised:

(#\ 1)
(Shape height, Eq height, Floating a) =>
Matrix.Symmetric height a ->
Vector height a -> Vector height a

Generic:

(#\ 1)
(Solve typ, HeightOf typ ~ height,
Eq height, Floating a) =>
Matrix typ a -> Vector height a -> Vector height a

m Infix operator reads as: “Matrix divides column vector”.
m Implemented by LAPACK's SPTRS
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Array shapes and indices

comfort-array

m Index type is a type function of the array shape

class Shape.C shape where
size :: shape -> Int

class Shape.C shape => Shape.Indexed shape where
type Index shape

Read a single element:

(') :: Array sh a -> Index sh -> a



http://hackage.haskell.org/package/comfort-array
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Zero-based indexing shape

newtype Shape.ZeroBased n = ZeroBased n

instance (Integral n) => Shape.Indexed (ZeroBased n)

where
type Index (ZeroBased n) = n

(') :: Array (ZeroBased Int) a -> Int -> a

array ! O

m Classical zero-based indexing scheme as in hmatrix

m In contrast to array lower bound is statically fixed to zero


http://hackage.haskell.org/package/hmatrix
http://hackage.haskell.org/package/array
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Enumeration shape

data Shape.Enumeration enum = Enumeration

instance (Enum enum, Bounded enum) =>
Shape.Indexed (Enumeration enum) where

type Index (Enumeration enum) = enum
(1) :: Array (Enumeration Ordering) a -> Ordering -> a
array ! compare x y

m Shape statically determined by an Enum type
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Cartesian product shape

instance
(Shape.Indexed sha, Shape.Indexed shb) =>
Shape.Indexed (sha, shb) where
type Index (sha, shb) = (Index sha, Index shb)

type E = Enumeration
)
Array (E Ordering, E Bool) a -> (Ordering, Bool)

array ! (compare x y, odd x)

->

a

m Represents a two-dimensional array of rectangular shape
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Sum shape

instance
(Shape.Indexed sha,
Shape.Indexed (sha

type E = Enumeration

(1)
Either Ordering Bool

array ! Right False

type Index (sha:+:shb) =

Array (E Ordering :+:

Shape.Indexed shb)
:+:shb) where

E Bool) a
-> a

->

>

Either (Index sha) (Index shb)

m Useful for block matrices
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Array shapes for corners and edges

data Coord = CO | C1

deriving (Eq, Ord, Show, Enum, Bounded)
data Dim = DX | DY | DZ

deriving (Eq, Ord, Show, Enum, Bounded)
type Corner = (Coord,Coord,Coord)
type Edge = (Dim,Coord, Coord)

type CoordSh = Shape.Enumeration Coord

type DimSh = Shape.Enumeration Dim

type CornerShape (CoordSh, CoordSh, CoordSh)
type EdgeShape (DimSh, CoordSh, CoordSh)
type BlockShape () :+:EdgeShape :+: CornerShape
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Achievement

no need to write index flattening function yourself
consistent structure of matrix and vectors
no fight over zero- vs. one-based index counting

no off-by-one errors
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Voltage matrix

voltageMatrix :: Matrix EdgeShape CornerShape a
voltageMatrix =
Matrix.fromRowArray cornerShape $
fmap
N\e ->

Array.fromAssociations cornerShape O
[(edgeCorner e CO, 1),
(edgeCorner e C1, -1)1) $
BoxedArray.indices edgeShape

edgeCorner :: Edge -> Coord -> Corner
edgeCorner (ed,e0,el) coord =
case ed of
DX -> (coord,e0,el)
DY -> (e0,coord,el)
DZ -> (e0,el,coord)
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Stacking symmetric matrices

#9% #
(Matrix.Symmetric sha a,

Matrix.General sha shb a)
Matrix.Symmetric shb a ->

Matrix.Symmetric (sha:+:shb) a

->

(a,b) #ULU# ¢~ (A B)

BT C
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Complete symmetric matrix

fullMatrix
Vector EdgeShape a ->
Matrix.Symmetric (():+:EdgeShape:+:CornerShape) a
fullMatrix resistances =
let symmetricZero = Matrix.zero . MatrixShape.symmetric
in (symmetricZero (),
Matrix.singleRow $
Vector .unit (edgeShape:+:cornerShape)
(Right sourceCorner))
#hhh#
(diagonal resistances, voltageMatrix)
#hhh#
symmetricZero cornerShape
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Result

sourceCorner , destCorner :: Corner
sourceCorner = (C0,C0,CO)
destCorner = (Cc1,C1,C1)
totalResistance :: Double
totalResistance =

let matrix = fullMatrix resistances

ix = Right (Right destCorner)
solutionVector =
matrix #\| Vector.unit (Symmetric.size matrix) ix
in - solutionVector ! ix
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Answer

For Rx00 = Rx01="-"=Rz11:

5
Riotal = 6 Rx.0,0
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Advantage

Matrix symmetry
m Specialized solvers
m Halved space usage

m Algebraic properties encoded in types, e.g.
eigenvalues :: Hermitian sh a -> Vector sh (RealOf a)

Complete example: resistor-cube


http://hackage.haskell.org/package/resistor-cube
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However

m Pretty artificial exercise

m The lapack bindings still have something to offer for the general problem.


http://hackage.haskell.org/package/lapack
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More realistic problem
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Set shape

import Data.Set (Set)

instance 0Ord ix => Shape.Indexed (Set ix) where
type Index (Set ix) = ix

(1) :: Array (Set ix) a -> ix -> a

Array (Set ix) a is isomorphic to Map ix a
logarithmic lookup

no insert or delete

instead fast Vector.add etc.

caveat: size compatibility check means comparision of sets

use as Matrix dimension
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Symmetric matrix for general problem

fullMatrix

(Graph.Edge edge, 0Ord node) =>

Graph edge node a () -> node ->

Matrix.Symmetric (() :+: Set (edge node) :+: Set node) a
fullMatrix graph source =

m Graph structure: comfort-graph

m Complete implementation: linear-circuit


http://hackage.haskell.org/package/comfort-graph
http://hackage.haskell.org/package/linear-circuit
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Sparsity

Matrix A is sparse
Most big matrix problems are sparse
LAPACK has no specialised algorithms for this case

so we don't currently provide ones, as well
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Block structure

m LAPACK ignores the block structure

m We could optimize using blockwise inversion
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More features

m conversion between Vector and Matrix preserves shape structure
i.e. matrices can be vectors in an equation system

lapack-ffi: auto-generated via lapack-ffi-tools

Test framework for generating consistent and inconsistent matrix dimensions using
unique-logic-tf

faster comfort-array processing via LLVM and knead

support for hyper (strongly hyped interactive notebook editor)


http://hackage.haskell.org/package/lapack-ffi
http://hackage.haskell.org/package/lapack-ffi-tools
http://hackage.haskell.org/package/unique-logic-tf
http://hackage.haskell.org/package/comfort-array
http://hackage.haskell.org/package/knead
http://hackage.haskell.org/package/hyper
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Closed-world classes

m lapack:
all functions support all element types that LAPACK supports,
i.e. Float, Double, Complex Float, Complex Double
m closed-world classes:
m add methods without extending class
m you cannot add more types

m plain Haskell 98


http://hackage.haskell.org/package/lapack
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L Closed-world classes

Closed-world class for Float and Double

class (Floating a, Prelude.

RealFloat a)

=> Real a where

switchReal f Float -> f Double -> f a
instance Real Float where switchReal f _ = f
instance Real Double where switchReal f = f
type ASUM_ a = Ptr CInt -> Ptr a -> Ptr CInt -> IO a
newtype ASUM a = ASUM {getASUM ASUM_ a}
asum Real a => ASUM_ a
asum = getASUM $ switchReal (ASUM S.asum) (ASUM D.asum)
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L Closed-world classes

Closed-world class for all LAPACK number types

class (Prelude.Fractional a) => Floating a where
switchFloating
f Float -> f Double ->
f (Complex Float) -> f (Complex Double) ->
f a

instance Floating Float where

switchFloating £ _ _ _ = £

instance Floating Double where
switchFloating _ £ _ _ = f

instance (Real a) => Floating (Complex a) where
switchFloating _ _ fz fc =

getCompose $ switchReal (Compose fz) (Compose fc)
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LTr;anspasition

Matrix type tags for triangle-based matrices

type Diagonal sh a = Triangular Empty Empty sh a
type Lower sh a = Triangular Filled Empty sh a
type Upper sh a = Triangular Empty Filled sh a
type Symmetric sh a = Triangular Filled Filled sh a
diagonal :: Vector sh a -> Triangular lo up sh a
transpose

Triangular lo up sh a -> Triangular up lo sh a

GHC can infer:
m diagonal matrix is also lower triangular and symmetric
m transposition of transposition maintains original shape
m transposition of lower triangular matrix is upper triangular
m transposition of diagonal or symmetric matrix maintains shape
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Matrix type tags for triangle-based matrices

class Content c where
instance Content Empty where
instance Content Filled where

class (Content lo, Content up) => DiagUpLo lo up where
instance DiagUpLo Empty Empty where
instance DiagUpLo Empty Filled where
instance DiagUpLo Filled Empty where

square :: (Content lo, Content up) =>
Triangular lo up sh a -> Triangular lo up sh a

multiply :: (DiagUpLo lo up, DiagUpLo up lo) =>
Triangular lo up sh a ->
Triangular lo up sh a -> Triangular lo up sh a
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LTr;anspasition

Matrix type tags for triangle-based matrices

square
(Content lo, Content up) =>
Triangular lo up sh a -> Triangular lo up sh a

multiply
(DiagUpLo lo up, DiagUpLo up lo) =>
Triangular lo up sh a ->
Triangular lo up sh a -> Triangular lo up sh a

GHC can infer:
m if multiplication preserves triangular shape,
then multiplication of transposed matrices does that, too
m e.g. multiply (transpose a) (transpose b)
is accepted without intervention
m square preserves shape wherever multiply does (superclass relation)



Expressive Linear Algebra in Haskell
L More features

LTransposition

Matrix size relations

type Square height width a = Matrix.Full Small Small height width a
type Tall height width a = Matrix.Full Big Small height width a
type Wide height width a = Matrix.Full Small Big height width a
type General height width a = Matrix.Full Big Big height width a

Relations:
m Square: height == width
m Tall: size height >= size width
m Wide: size height <= size width
m General: arbitrary height, width

all relations are transitive
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LTranspasition

Matrix size relations

transpose
Matrix.Full vert horiz height width a ->
Matrix.Full horiz vert width height a

multiply ::
Matrix.Full vert horiz height width a ->
Matrix.Full vert horiz height width ->
Matrix.Full vert horiz height width a

[V

GHC can infer:
transposition of transposition maintains original shape
transposition of square matrix is square

]
|
m transposition of tall matrix is wide
B square times square is square

|

tall times tall is tall
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Matrix size relations

transpose
Matrix.Full
Matrix.Full

multiply ::
Matrix.Full
Matrix.Full
Matrix.Full

vert horiz
horiz vert

vert horiz
vert horiz
vert horiz

height width
width height

height width
height width
height width

()

->
=->

ugly:

m you must explicitly relax size relations
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LAPACK+BLAS

The lapack binding is based on LAPACK+BLAS library.
Advantages:

m standard solution, ubiquitous availability

m many implementations optimized for usage of caches and vector units
(OpenBLAS, ATLAS, MKL)

m many advanced functions:

m linear solvers,

m least squares and minimum norm solvers,
m eigenvalues and

m singular value decompositions

of many common matrix types


http://hackage.haskell.org/package/lapack
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LAPACK+BLAS

Disadvantages:
m restricted to Float, Double, Complex Float, Complex Double
m i.e. no QuadDouble, no finite fields, no interval arithmetics
B no sparse matrices

® no batch processing,

i.e. optimized simultaneous solution of many equally sized problems
m missing basic functions:

matrix transpose, minimum and maximum, product
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Existing Alternatives

Alternatives in Haskell:
® hmatrix:
matrices with dynamic and static sizes of natural numbers
m repa, accelerate:
for efficiency reasons restricted to cubic shapes
m array:
flexible indexing schemes but shape and index types coincide


http://hackage.haskell.org/package/hmatrix
http://hackage.haskell.org/package/repa
http://hackage.haskell.org/package/accelerate
http://hackage.haskell.org/package/array
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Conclusion

m There is more to static checks on matrix computations
than type-level natural numbers.

m Special matrix types:
better documentation + optimized algorithms

m Transpositions treatable with simple type tricks —
Can be generalized to operations on (small) permutations.
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