Expressive Linear Algebra in Haskell

Expressive Linear Algebra in Haskell

Henning Thielemann

2019-08-21



Expressive Linear Algebra in Haskell

L Motivation

Motivation



Expressive Linear Algebra in Haskell

L Motivation

Resistor cube

Wanted:
Total resistance



Expressive Linear Algebra in Haskell

L Motivation

Ohm's law




Expressive Linear Algebra in Haskell

L Motivation

Kirchhoff's current law

0=—lKkoot+h10+1z10
0=—-Kkoi1t+N11-1z10



Expressive Linear Algebra in Haskell

L Motivation

Kirchhoff’s voltage law

= —Vo,00+ V1o,
—V1,00+ V110,




T
<
]
a
I
£
e
5
o)
20
<
&
153
£
3
o
2
@
@
4
s
X
i}

L Motivation

Il
~~===========p>>>>>>>>
017.0000010001000000000
000101_.000010000000000
0010001001_‘00000000000
HIHFO OO OO O-HOOOIOOOOOOOOo
OOOOOOOOOOOOROOOOOOI.ﬂ
OOOOOOOOOOOROOOOOT.J.OO
OOOOOOOOOOROOOOI_I_AOOOO
OOOOOOOOOROOOI_I_.OOOOOO
OOOOOOOOROOOOOOOOOIO.ﬂ
OOOOOOOROOOOOOOOOIO.ﬂO
OOOOOOROOOOOOOIO_I_AOOOO
OOOOOROOOOOOOIO_I_AOOOOO
OOOOROOOOOOOOAUOOlOOO.ﬂ
OOOROOOOOOOOOOO_IAOOO_I,.O
OOROOOOOOOOOOOIOOOJ‘OO
OROOOOOOOOOOOIOOO_I_AOOO
OO0 000000000 O0OHODOOOOOO

0

—Ii11—ki11—1lz11=1A

0 liotal + Ix,0,0 + hy,00 + 12,00

Rx,00 - Ix,00 + V0,00 — V1,00=0

V0,0,0



Expressive Linear Algebra in Haskell

L Motivation

Solution

U
Rtotal = ILmll (1)
tota.
V; -V
1,1,1 0,0,0 (2)

Itotal



Expressive Linear Algebra in Haskell

L Motivation

Matrix blocks

0 0 ”(Io,o
A= 0 R V
U070,0 | 0

m R: encodes Ohm'’s law
m V: encodes Kirchhoff’s voltage law

m |: encodes Kirchhoff's current law



Expressive Linear Algebra in Haskell

L Motivation

Matrix symmetry

0 0
A= 0 R
up00 |

Rx 0,0
Rx 0,1

1=V’

Rz11



Expressive Linear Algebra in Haskell

L Motivation

Matrix features

Matrix A is
B symmetric,
m composed from blocks,
m and every block has a special sub-structure.

Can we represent this with Haskell’s type system?



Expressive Linear Algebra in Haskell
L Solution

Solution



Expressive Linear Algebra in Haskell

L Solution

Solution of simultaneous linear equations

Specialised:

(#\ 1)
(Shape height, Eq height, Floating a) =>
Matrix.Symmetric height a ->
Vector height a -> Vector height a

Generic:

(#\ 1)
(Solve typ, HeightOf typ ~ height,
Eq height, Floating a) =>
Matrix typ a -> Vector height a -> Vector height a

m Infix operator reads as: “Matrix divides column vector”.
m Implemented by LAPACK's SPTRS



Expressive Linear Algebra in Haskell

L Solution

Array shapes and indices

comfort-array

m Index type is a type function of the array shape

class Shape.C shape where
size :: shape -> Int

class Shape.C shape => Shape.Indexed shape where
type Index shape

Read a single element:

(') :: Array sh a -> Index sh -> a



http://hackage.haskell.org/package/comfort-array

Expressive Linear Algebra in Haskell
L Solution

Zero-based indexing shape

newtype Shape.ZeroBased n = ZeroBased n

instance (Integral n) => Shape.Indexed (ZeroBased n)

where
type Index (ZeroBased n) = n

(') :: Array (ZeroBased Int) a -> Int -> a

array ! O

m Classical zero-based indexing scheme as in hmatrix

m In contrast to array lower bound is statically fixed to zero


http://hackage.haskell.org/package/hmatrix
http://hackage.haskell.org/package/array

Expressive Linear Algebra in Haskell

L Solution

Enumeration shape

data Shape.Enumeration enum = Enumeration

instance (Enum enum, Bounded enum) =>
Shape.Indexed (Enumeration enum) where

type Index (Enumeration enum) = enum
(1) :: Array (Enumeration Ordering) a -> Ordering -> a
array ! compare x y

m Shape statically determined by an Enum type



Expressive Linear Algebra in Haskell

L Solution

Cartesian product shape

instance
(Shape.Indexed sha, Shape.Indexed shb) =>
Shape.Indexed (sha, shb) where
type Index (sha, shb) = (Index sha, Index shb)

type E = Enumeration
)
Array (E Ordering, E Bool) a -> (Ordering, Bool)

array ! (compare x y, odd x)

->

a

m Represents a two-dimensional array of rectangular shape




Expressive Linear Algebra in Haskell

L Solution

Sum shape

instance
(Shape.Indexed sha,
Shape.Indexed (sha

type E = Enumeration

(1)
Either Ordering Bool

array ! Right False

type Index (sha:+:shb) =

Array (E Ordering :+:

Shape.Indexed shb)
:+:shb) where

E Bool) a
-> a

->

>

Either (Index sha) (Index shb)

m Useful for block matrices




Expressive Linear Algebra in Haskell

L Solution

Array shapes for corners and edges

data Coord = CO | C1

deriving (Eq, Ord, Show, Enum, Bounded)
data Dim = DX | DY | DZ

deriving (Eq, Ord, Show, Enum, Bounded)
type Corner = (Coord,Coord,Coord)
type Edge = (Dim,Coord, Coord)

type CoordSh = Shape.Enumeration Coord

type DimSh = Shape.Enumeration Dim

type CornerShape (CoordSh, CoordSh, CoordSh)
type EdgeShape (DimSh, CoordSh, CoordSh)
type BlockShape () :+:EdgeShape :+: CornerShape




Expressive Linear Algebra in Haskell

L Solution

Achievement

no need to write index flattening function yourself
consistent structure of matrix and vectors
no fight over zero- vs. one-based index counting

no off-by-one errors



Expressive Linear Algebra in Haskell

L Solution

Voltage matrix

voltageMatrix :: Matrix EdgeShape CornerShape a
voltageMatrix =
Matrix.fromRowArray cornerShape $
fmap
N\e ->

Array.fromAssociations cornerShape O
[(edgeCorner e CO, 1),
(edgeCorner e C1, -1)1) $
BoxedArray.indices edgeShape

edgeCorner :: Edge -> Coord -> Corner
edgeCorner (ed,e0,el) coord =
case ed of
DX -> (coord,e0,el)
DY -> (e0,coord,el)
DZ -> (e0,el,coord)




Expressive Linear Algebra in Haskell

L Solution

Stacking symmetric matrices

#9% #
(Matrix.Symmetric sha a,

Matrix.General sha shb a)
Matrix.Symmetric shb a ->

Matrix.Symmetric (sha:+:shb) a

->

(a,b) #ULU# ¢~ (A B)

BT C




Expressive Linear Algebra in Haskell

L Solution

Complete symmetric matrix

fullMatrix
Vector EdgeShape a ->
Matrix.Symmetric (():+:EdgeShape:+:CornerShape) a
fullMatrix resistances =
let symmetricZero = Matrix.zero . MatrixShape.symmetric
in (symmetricZero (),
Matrix.singleRow $
Vector .unit (edgeShape:+:cornerShape)
(Right sourceCorner))
#hhh#
(diagonal resistances, voltageMatrix)
#hhh#
symmetricZero cornerShape




Expressive Linear Algebra in Haskell

L Solution

Result

sourceCorner , destCorner :: Corner
sourceCorner = (C0,C0,CO)
destCorner = (Cc1,C1,C1)
totalResistance :: Double
totalResistance =

let matrix = fullMatrix resistances

ix = Right (Right destCorner)
solutionVector =
matrix #\| Vector.unit (Symmetric.size matrix) ix
in - solutionVector ! ix




Expressive Linear Algebra in Haskell

L Solution

Answer

For Rx00 = Rx01="-"=Rz11:

5
Riotal = 6 Rx.0,0



Expressive Linear Algebra in Haskell

L Solution

Advantage

Matrix symmetry
m Specialized solvers
m Halved space usage

m Algebraic properties encoded in types, e.g.
eigenvalues :: Hermitian sh a -> Vector sh (RealOf a)

Complete example: resistor-cube


http://hackage.haskell.org/package/resistor-cube

Expressive Linear Algebra in Haskell

L Solution

However

m Pretty artificial exercise

m The lapack bindings still have something to offer for the general problem.


http://hackage.haskell.org/package/lapack

Expressive Linear Algebra in Haskell

L More realistic problem

More realistic problem



Expressive Linear Algebra in Haskell

LMore realistic problem

Set shape

import Data.Set (Set)

instance 0Ord ix => Shape.Indexed (Set ix) where
type Index (Set ix) = ix

(1) :: Array (Set ix) a -> ix -> a

Array (Set ix) a is isomorphic to Map ix a
logarithmic lookup

no insert or delete

instead fast Vector.add etc.

caveat: size compatibility check means comparision of sets

use as Matrix dimension



Expressive Linear Algebra in Haskell

LMore realistic problem

Symmetric matrix for general problem

fullMatrix

(Graph.Edge edge, 0Ord node) =>

Graph edge node a () -> node ->

Matrix.Symmetric (() :+: Set (edge node) :+: Set node) a
fullMatrix graph source =

m Graph structure: comfort-graph

m Complete implementation: linear-circuit


http://hackage.haskell.org/package/comfort-graph
http://hackage.haskell.org/package/linear-circuit

Expressive Linear Algebra in Haskell

LMore realistic problem

Sparsity

Matrix A is sparse
Most big matrix problems are sparse
LAPACK has no specialised algorithms for this case

so we don't currently provide ones, as well



Expressive Linear Algebra in Haskell

LMore realistic problem

Block structure

m LAPACK ignores the block structure

m We could optimize using blockwise inversion



Expressive Linear Algebra in Haskell

L More features

More features



Expressive Linear Algebra in Haskell

L More features

More features

m conversion between Vector and Matrix preserves shape structure
i.e. matrices can be vectors in an equation system

lapack-ffi: auto-generated via lapack-ffi-tools

Test framework for generating consistent and inconsistent matrix dimensions using
unique-logic-tf

faster comfort-array processing via LLVM and knead

support for hyper (strongly hyped interactive notebook editor)


http://hackage.haskell.org/package/lapack-ffi
http://hackage.haskell.org/package/lapack-ffi-tools
http://hackage.haskell.org/package/unique-logic-tf
http://hackage.haskell.org/package/comfort-array
http://hackage.haskell.org/package/knead
http://hackage.haskell.org/package/hyper

Expressive Linear Algebra in Haskell
L More features

L Closed-world classes

Closed-world classes

m lapack:
all functions support all element types that LAPACK supports,
i.e. Float, Double, Complex Float, Complex Double
m closed-world classes:
m add methods without extending class
m you cannot add more types

m plain Haskell 98


http://hackage.haskell.org/package/lapack

Expressive Linear Algebra in Haskell
L More features

L Closed-world classes

Closed-world class for Float and Double

class (Floating a, Prelude.

RealFloat a)

=> Real a where

switchReal f Float -> f Double -> f a
instance Real Float where switchReal f _ = f
instance Real Double where switchReal f = f
type ASUM_ a = Ptr CInt -> Ptr a -> Ptr CInt -> IO a
newtype ASUM a = ASUM {getASUM ASUM_ a}
asum Real a => ASUM_ a
asum = getASUM $ switchReal (ASUM S.asum) (ASUM D.asum)




Expressive Linear Algebra in Haskell
L More features

L Closed-world classes

Closed-world class for all LAPACK number types

class (Prelude.Fractional a) => Floating a where
switchFloating
f Float -> f Double ->
f (Complex Float) -> f (Complex Double) ->
f a

instance Floating Float where

switchFloating £ _ _ _ = £

instance Floating Double where
switchFloating _ £ _ _ = f

instance (Real a) => Floating (Complex a) where
switchFloating _ _ fz fc =

getCompose $ switchReal (Compose fz) (Compose fc)




Expressive Linear Algebra in Haskell
L More features

LTr;anspasition

Matrix type tags for triangle-based matrices

type Diagonal sh a = Triangular Empty Empty sh a
type Lower sh a = Triangular Filled Empty sh a
type Upper sh a = Triangular Empty Filled sh a
type Symmetric sh a = Triangular Filled Filled sh a
diagonal :: Vector sh a -> Triangular lo up sh a
transpose

Triangular lo up sh a -> Triangular up lo sh a

GHC can infer:
m diagonal matrix is also lower triangular and symmetric
m transposition of transposition maintains original shape
m transposition of lower triangular matrix is upper triangular
m transposition of diagonal or symmetric matrix maintains shape



Expressive Linear Algebra in Haskell
L More features
LTr;anspasition

Matrix type tags for triangle-based matrices

class Content c where
instance Content Empty where
instance Content Filled where

class (Content lo, Content up) => DiagUpLo lo up where
instance DiagUpLo Empty Empty where
instance DiagUpLo Empty Filled where
instance DiagUpLo Filled Empty where

square :: (Content lo, Content up) =>
Triangular lo up sh a -> Triangular lo up sh a

multiply :: (DiagUpLo lo up, DiagUpLo up lo) =>
Triangular lo up sh a ->
Triangular lo up sh a -> Triangular lo up sh a




Expressive Linear Algebra in Haskell
L More features

LTr;anspasition

Matrix type tags for triangle-based matrices

square
(Content lo, Content up) =>
Triangular lo up sh a -> Triangular lo up sh a

multiply
(DiagUpLo lo up, DiagUpLo up lo) =>
Triangular lo up sh a ->
Triangular lo up sh a -> Triangular lo up sh a

GHC can infer:
m if multiplication preserves triangular shape,
then multiplication of transposed matrices does that, too
m e.g. multiply (transpose a) (transpose b)
is accepted without intervention
m square preserves shape wherever multiply does (superclass relation)



Expressive Linear Algebra in Haskell
L More features

LTransposition

Matrix size relations

type Square height width a = Matrix.Full Small Small height width a
type Tall height width a = Matrix.Full Big Small height width a
type Wide height width a = Matrix.Full Small Big height width a
type General height width a = Matrix.Full Big Big height width a

Relations:
m Square: height == width
m Tall: size height >= size width
m Wide: size height <= size width
m General: arbitrary height, width

all relations are transitive



Expressive Linear Algebra in Haskell
L More features

LTranspasition

Matrix size relations

transpose
Matrix.Full vert horiz height width a ->
Matrix.Full horiz vert width height a

multiply ::
Matrix.Full vert horiz height width a ->
Matrix.Full vert horiz height width ->
Matrix.Full vert horiz height width a

[V

GHC can infer:
transposition of transposition maintains original shape
transposition of square matrix is square

]
|
m transposition of tall matrix is wide
B square times square is square

|

tall times tall is tall



Expressive Linear Algebra in Haskell
L More features

LTranspasition

Matrix size relations

transpose
Matrix.Full
Matrix.Full

multiply ::
Matrix.Full
Matrix.Full
Matrix.Full

vert horiz
horiz vert

vert horiz
vert horiz
vert horiz

height width
width height

height width
height width
height width

()

->
=->

ugly:

m you must explicitly relax size relations




Expressive Linear Algebra in Haskell
LClosing

Closing



Expressive Linear Algebra in Haskell

LClosing

LAPACK+BLAS

The lapack binding is based on LAPACK+BLAS library.
Advantages:

m standard solution, ubiquitous availability

m many implementations optimized for usage of caches and vector units
(OpenBLAS, ATLAS, MKL)

m many advanced functions:

m linear solvers,

m least squares and minimum norm solvers,
m eigenvalues and

m singular value decompositions

of many common matrix types


http://hackage.haskell.org/package/lapack

Expressive Linear Algebra in Haskell

LClosing

LAPACK+BLAS

Disadvantages:
m restricted to Float, Double, Complex Float, Complex Double
m i.e. no QuadDouble, no finite fields, no interval arithmetics
B no sparse matrices

® no batch processing,

i.e. optimized simultaneous solution of many equally sized problems
m missing basic functions:

matrix transpose, minimum and maximum, product



Expressive Linear Algebra in Haskell

LClosing

Existing Alternatives

Alternatives in Haskell:
® hmatrix:
matrices with dynamic and static sizes of natural numbers
m repa, accelerate:
for efficiency reasons restricted to cubic shapes
m array:
flexible indexing schemes but shape and index types coincide


http://hackage.haskell.org/package/hmatrix
http://hackage.haskell.org/package/repa
http://hackage.haskell.org/package/accelerate
http://hackage.haskell.org/package/array

Expressive Linear Algebra in Haskell

LClosing

Conclusion

m There is more to static checks on matrix computations
than type-level natural numbers.

m Special matrix types:
better documentation + optimized algorithms

m Transpositions treatable with simple type tricks —
Can be generalized to operations on (small) permutations.



	Motivation
	Solution
	More realistic problem
	More features
	Closed-world classes
	Transposition

	Closing

