
Types for Protocols

Peter Thiemann

University of Freiburg

Summer BOB, August 2019

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 1 / 51

Table of Contents

1 Types

2 Session Types

3 Phenomena
Deadlocks
Subtyping
Extensions
Dependent Types
Multiparty Session Types

4 Conclusion

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 2 / 51

Outline

1 Types

2 Session Types

3 Phenomena
Deadlocks
Subtyping
Extensions
Dependent Types
Multiparty Session Types

4 Conclusion

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 3 / 51

Types

A success story since [Church 1940]

Most frequently used formal method

Invented to

describe successful computations
prevent run-time errors

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 4 / 51

Errors Prevented by Traditional Types

Avoid data being used differently than intended

A bit pattern intended as a floating point number should not be used as an integer

⇒ Hence, Float and Int should be distinct types!

A bit pattern intended as an integer should not be used as an address (of a string)

⇒ Hence, String and Int should be distinct types!

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 5 / 51

Traditional Type Systems

This kind of type system is extremely well researched

Put into practice in many statically typed programming languages

Eliminate a whole class of errors

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 6 / 51

A Typical Type Language

T ,U ∶∶= Int ∣ Bool ∣ Float
∣ (T ,U) ∣ T +U ∣ [T]
∣ {`i ∶ Ti} ∣ [`i ∶ Ti] ∣ T → U

For example

42 : Int

True : Bool

6.022E23 : Float

(True, 1) : (Bool, Int)

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 7 / 51

But we can find more errors than that!

Many of them are still in the scope of a type system

Track additional properties of values

refined types (e.g., subsets of numbers or strings)

data integrity and confidentiality → security type systems

units of measure

etc

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 8 / 51

But we can find entirely different errors, too!

Track behaviors — behavioral types

Values / objects have a state

Changes over time in response to external stimuli

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 9 / 51

The good old file example

module F i l e : s i g
type t

va l fo pe n : path → t
va l w r i t e : t → s t r i ng → un i t
va l c lose : t → un i t

end

f = fopen ”foo” creates a new file named foo for writing

The file handle f has an abstract type File . t

We can write f ” ... ” arbitrary many times and then close f

We still have a hold on f, but writing again yields an error!

l e t f = fo pe n ” f o o ” i n
l e t = w r i t e f ” s t u f f ” i n
l e t = c lose f i n
l e t = w r i t e f ”more” i n (∗ run− t ime e r ro r ∗)

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 10 / 51

A simplistic solution

module F i l e : s i g
type t : l i n

va l fo pe n : path → t
va l w r i t e : t → s t r i ng → t
va l c lose : t → un i t

end

We only change the interface to file handles

The type File . t of file handles is now linear

⇒ cannot be deleted or duplicated

write returns a fresh file handle to the updated file

close consumes the file handle

Writing after close is a type error:

l e t f 1 = fop en ” f o o ” i n
l e t f 2 = w r i t e f 1 ” s t u f f ” i n
l e t = c lose f 2 i n
l e t = w r i t e f 2 ”more” i n (∗ type e r ro r ∗)

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 11 / 51

On linear typing

every variable (of linear type) must be used exactly once

rooted in linear logic [Girard 1987]

has found uses in memory management and more generally in resource management

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 12 / 51

Outline

1 Types

2 Session Types

3 Phenomena
Deadlocks
Subtyping
Extensions
Dependent Types
Multiparty Session Types

4 Conclusion

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 13 / 51

Types for protocols — session types

Types for structured bidirectional communication

Session types prescribe
1 the values transmitted

classical type safety
2 the direction and sequencing of transmissions

session fidelity

Session types codify the structure of communication and make it available to reasoning
and programming tools

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 14 / 51

A little history

Session types were born more than 25 years ago

Originally stated for the π-calculus, a calculus for communication

Seminal papers

Kohei Honda, “Types for Dyadic Interaction”, CONCUR 1993.
Takeuchi, Honda & Kubo, “An Interaction-Based Language and its Typing System”, PARLE
1994.
Honda, Vasconcelos & Kubo, “Language Primitives and Type Discipline for Structured
Communication-Based Programming”, ESOP 1998.

Presentation influenced by
Simon Gay, Vasco Vasconcelos, ”Linear Type Theory for Asynchronous Session Types”,
Journal of Functional Programming 20(1):19-50 (2010).

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 15 / 51

The good old math server

Server type

type S e r v e r = &{
Neg : ? Int . ! Int . S e r v e r ,
Add : ? Int . ? Int . ! Int . S e r v e r ,
Quit : end}

Client type

type C l i e n t = ⊕{
Neg : ! Int . ? Int . C l i e n t ,
Add : ! Int . ! Int . ? Int . C l i e n t ,
Quit : end}

Duality

C l i e n t = dualof S e r v e r

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 16 / 51

The good old math server

Server type

type S e r v e r = &{
Neg : ? Int . ! Int . S e r v e r ,
Add : ? Int . ? Int . ! Int . S e r v e r ,
Quit : end}

Client type

type C l i e n t = ⊕{
Neg : ! Int . ? Int . C l i e n t ,
Add : ! Int . ! Int . ? Int . C l i e n t ,
Quit : end}

Duality

C l i e n t = dualof S e r v e r

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 16 / 51

The good old math server

Server type

type S e r v e r = &{
Neg : ? Int . ! Int . S e r v e r ,
Add : ? Int . ? Int . ! Int . S e r v e r ,
Quit : end}

Client type

type C l i e n t = ⊕{
Neg : ! Int . ? Int . C l i e n t ,
Add : ! Int . ! Int . ? Int . C l i e n t ,
Quit : end}

Duality

C l i e n t = dualof S e r v e r

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 16 / 51

Session types

S ∶∶=
&{`i ∶ Si} branch / offer / external choice

⊕{`i ∶ Si} select / internal choice

?T .S input T continue as S

!T .S output T continue as S

end marks the end of the protocol

T ∶∶= S ∣ Int ∣ ∗ ∣ T ⊗T ∣ T → T ∣ . . . functional fragment

the ”.” indicates sequencing

Neg, Add, Quit are choice labels, which are all different

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 17 / 51

Math server implementation

Server type

type S e r v e r = &{
Neg : ? Int . ! Int . S e r v e r ,
Add : ? Int . ? Int . ! Int . S e r v e r ,
Quit : end}

Implementation

s e r v e r : S e r v e r → Unit
s e r v e r c =

rcase c of
Neg → c . l e t x , c = recv c

c = send c (−x) i n
s e r v e r c

Add → c . l e t x , c = recv c
y , c = recv c

c = send c (x + y) i n
s e r v e r c

Quit → c . c lose c

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 18 / 51

Math server implementation

Server type

type S e r v e r = &{
Neg : ? Int . ! Int . S e r v e r ,
Add : ? Int . ? Int . ! Int . S e r v e r ,
Quit : end}

Implementation

s e r v e r : S e r v e r → Unit
s e r v e r c =

rcase c of
Neg → c . l e t x , c = recv c

c = send c (−x) i n
s e r v e r c

Add → c . l e t x , c = recv c
y , c = recv c

c = send c (x + y) i n
s e r v e r c

Quit → c . c lose cPeter Thiemann (University of Freiburg) Types for Protocols August 2019 18 / 51

Zooming in on changing types

s e r v e r : S e r v e r → Unit
s e r v e r c =

rcase c of
Neg → c . // c : ? Int . ! Int . S e r v e r

l e t x , c = recv c
// c : ! Int . S e r v e r

c = send c (−x) i n
// c : S e r v e r
s e r v e r c

Add → c . // c : ? Int . ? Int . ! Int . S e r v e r
l e t x , c = recv c
// c : ? Int . ! Int . S e r v e r

y , c = recv c
// c : ! Int . S e r v e r

c = send c (x + y) i n
// c : S e r v e r
s e r v e r c

Quit → c . c lose c

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 19 / 51

. . . and a client

n e g C l i e n t : dualof S e r v e r → Int
n e g C l i e n t d x =

l e t d = s e l e c t Neg d
d = send d x

r , d = recv d
d = s e l e c t Quit d i n

r

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 20 / 51

Making a connection

ports
p : #S e r v e r

l e t s = a c c e p t p i n
s e r v e r s

| |
l e t c = r e q u e s t p i n

n e g c l i e n t c 42

#Server is the type of a port that can spawn off new sessions with endpoints of type
Server and dualof Server

accept obtains the session of type Server

request obtain the session of the dual type Client

accept and request synchronize on the port

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 21 / 51

Key points

Session endpoints are linear: each endpoint occurs exactly once in a system

Session types change with each communication

Structure of the code matches structure of the session type

Sessions are higher-order,
i.e., session endpoints may be transmitted

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 22 / 51

Outline

1 Types

2 Session Types

3 Phenomena
Deadlocks
Subtyping
Extensions
Dependent Types
Multiparty Session Types

4 Conclusion

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 23 / 51

Outline

1 Types

2 Session Types

3 Phenomena
Deadlocks
Subtyping
Extensions
Dependent Types
Multiparty Session Types

4 Conclusion

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 24 / 51

Deadlocks

ports
p1 : #(! Int . end)
p2 : #(! Int . end)

l e t s1 = a c c e p t p1
s2 = a c c e p t p2
s1 = send s1 41 −− s t u ck
s2 = send s2 42

| |
l e t c1 = r e q u e s t p1

c2 = r e q u e s t p2
v2 , c2 = rece i ve c2 −− s t u ck
v1 , c1 = rece i ve c1

first-order sessions (only base types transmitted)

deadlock because synchronous send operation blocks

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 25 / 51

Deadlocks

type S = ! Int . end
ports

p1 : #(?S . end)
p2 : #S

l e t s1 = a c c e p t p1
s2 = a c c e p t p2
c2 , s1 = rece i ve s1
c lose s1
v2 , c2 = rece i ve c2 −− s t u ck
s2 = send s2 42

| |
l e t c1 = r e q u e s t p1

c2 = r e q u e s t p2
c1 = send c1 c2

i n c lose c1

higher-order sessions (c2 is sent over c1)

first process is stuck even if sending is asynchronous

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 26 / 51

Deadlocks

Session types (in general) do not rule out deadlocks

But there are versions that do

Based on cycle detection [Kobayashi] [Padovani]
Based on topological constraints [Caires, Pfenning] [Wadler]

Topological constraints are enforced by linking process creation with session creation

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 27 / 51

Outline

1 Types

2 Session Types

3 Phenomena
Deadlocks
Subtyping
Extensions
Dependent Types
Multiparty Session Types

4 Conclusion

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 28 / 51

Flexibility — Subtyping

Following Liskov’s substitution principle [Liskov, Wing 1994]: “if S <∶ T , then it is safe to
use a value of type S where a value of type T is expected”

The implementation does not have to match the type of the port exactly

it can implement a supertype, that is, the port’s type is more restricted

There are two sources of subsumption

external choice: a session of type &{`1 ∶ S1, . . . , `n ∶ Sn} can be used even when more choices
are expected
internal choice: a session of type ⊕{`1 ∶ S1, . . . , `n ∶ Sn} can be used with any subset of the
given choices

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 29 / 51

Flexibility — Subtyping

Example: the client

type C l i e n t = ⊕{
Neg : ! Int . ? Int . C l i e n t ,
Add : ! Int . ! Int . ? Int . C l i e n t ,
Quit : end}

but the actual code does not use the Add choice:

type C l i e n t 1 = ⊕{
Neg : ! Int . ? Int . C l i e n t 1 ,
Quit : end}

or completely aligned with the code

type C l i e n t 2 = ⊕{
Neg : ! Int . ? Int . ⊕{
Quit : end}}

The types are related by subtyping: Client <: Client1 <: Client2

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 30 / 51

More sources of subtyping

If a session !T .S is ready to send a value of type T , we can also send a value of a
subtype T ′ <∶ T .

If a session ?T .S is ready to receive a value of type T , we can also expect a value of a
supertype T ′ ∶> T .

Analogous to subtyping for functions.

First study:
Simon J. Gay, Malcolm J. Hole, ”Types and Subtypes for Client-Server Interactions”,
ESOP1999, 74-90

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 31 / 51

More sources of subtyping

Implicit assumption so far: synchronous communication

But session types are also sound for asychronous communication!

Asynchrony gives further scope for subtyping because the sender can keep sending even
when the receiver is not catching up immediately

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 32 / 51

Example

Synchronous version

n e g C l i e n t :
dualof S e r v e r → Int

n e g C l i e n t d x =
l e t d = s e l e c t Neg d

d = send d x
r , d = recv d

d = s e l e c t Quit d
i n r

Asynchronous version

a s y n c N e g C l i e n t :
??? → Int

a s y n c N e g C l i e n t d x =
l e t d = s e l e c t Neg d

d = send d x
d = s e l e c t Quit d

r , d = recv d
i n r

In the asyncNegClient we have

d : ⊕{ Neg : ! Int . ⊕{ Quit : ? Int . end }}

which is not a supertype of dualof Server

but it would be an asynchronous supertype

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 33 / 51

The state of subtyping

Synchronous subtyping is decidable

(Unrestricted) asychronous subtyping is undecidable

State of the art:

Mario Bravetti, Marco Carbone, Julien Lange, Nobuko Yoshida, Gianluigi Zavattaro: A
Sound Algorithm for Asynchronous Session Subtyping (extended version). CoRR
abs/1907.00421 (2019)
Julien Lange, Nobuko Yoshida: On the Undecidability of Asynchronous Session Subtyping.
FoSSaCS 2017: 441-457
Mario Bravetti, Marco Carbone, Gianluigi Zavattaro: On the boundary between decidability
and undecidability of asynchronous session subtyping. Theor. Comput. Sci. 722: 19-51
(2018)
Mario Bravetti, Marco Carbone, Gianluigi Zavattaro: Undecidability of asynchronous session
subtyping. Inf. Comput. 256: 300-320 (2017)

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 34 / 51

Outline

1 Types

2 Session Types

3 Phenomena
Deadlocks
Subtyping
Extensions
Dependent Types
Multiparty Session Types

4 Conclusion

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 35 / 51

Extension: Exceptions and timeouts

Exceptions

In a realistic setting, network connections do not work flawlessly

Session types can be extended to deal with such disruptions in an orderly way

Simon Fowler, Sam Lindley, J. Garrett Morris, Sára Decova: Exceptional asynchronous
session types: session types without tiers. PACMPL 3(POPL): 28:1-28:29 (2019)

Timeouts

Session types can deal with timeouts by adding extra timed choices to external choices

Laura Bocchi, Maurizio Murgia, Vasco Thudichum Vasconcelos, Nobuko Yoshida:
Asynchronous Timed Session Types - From Duality to Time-Sensitive Processes. ESOP
2019: 583-610

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 36 / 51

Extension: Gradual typing

Gradual typing allows programmers to leave parts of types unspecified, but to retain type
safety by inserting suitable run-time checks

For session types, graduality requires checking adherence to linear use of sessions as well
as session fidelity dynamically at run time.

Atsushi Igarashi, Peter Thiemann, Vasco T. Vasconcelos, Philip Wadler: Gradual session
types. PACMPL 1(ICFP): 38:1-38:28 (2017)

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 37 / 51

Other approaches to run-time monitoring

Compilation to timed automata
Rumyana Neykova, Laura Bocchi, Nobuko Yoshida: Timed runtime monitoring for
multiparty conversations. Formal Asp. Comput. 29(5): 877-910 (2017)

Session type contracts
Hernán C. Melgratti, Luca Padovani: Chaperone contracts for higher-order sessions.
PACMPL 1(ICFP): 35:1-35:29 (2017)

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 38 / 51

Outline

1 Types

2 Session Types

3 Phenomena
Deadlocks
Subtyping
Extensions
Dependent Types
Multiparty Session Types

4 Conclusion

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 39 / 51

Extension: Dependent types

Many practical protocol have variable-length fields

The naive encoding in a session type relies on a list-like protocol structure:

type Bytes = &{
More : ? Byte . Bytes ,
Done : end }

This type enables sending an arbitrary number of Bytes, but it is inefficient due to the
intervening “flow control” messages More and Done.

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 40 / 51

Extension: Dependent types (2)

It would be more efficient to be able to send the number n of bytes first, followed by
exactly n bytes without any administrative messages.

A typical scenario for dependent types

To this end, we need to

write a (type-level) function from numbers to session types
write a dependently typed function that actually receives the byte stream

To simplify matters, we return a list of Bytes, but we could also return a suitably sized
vector.

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 41 / 51

Extension: Dependent types (3)

type B n = i f n == 0
then end
e l s e ? Byte . B(n−1)

type NBytes = ?(n : Nat) . B n

readBytes ’ : (n : Nat) → B n → l i s t Byte
readBytes ’ n c = i f n == 0

then []
e l s e l e t v , c = rece i ve c

vs = readBytes ’ (n−1) c
i n v : : v s

r e a d B y t e s : NBytes → l i s t Byte
r e a d B y t e s c =

l e t n , c = rece i ve c i n
r eadBytes ’ n c

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 42 / 51

Extension: Dependent types (4)

Challenges

Types for sending and receiving must admit dependency

Implies the need for Π and Σ types
(dependent products and sums)

Type checking and subtyping need to be decidable

Type-level functions (like B) need to be terminating

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 43 / 51

Outline

1 Types

2 Session Types

3 Phenomena
Deadlocks
Subtyping
Extensions
Dependent Types
Multiparty Session Types

4 Conclusion

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 44 / 51

Extension: Multiparty session types

Binary session types

Binary session types describe communication between two partners

A single process may have several sessions, but communication on them is not
coordinated and can lead to deadlock.

Multiparty session types [Honda, Yoshida, Carbone: POPL 2008]

Communication between several processes is governed by a single global type

Global type can be analyzed to guarantee deadlock freedom

Each process communicates according to its local type which is projected from the global
type

Local type checking sufficient to guarantee communication safety

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 45 / 51

Multiparty session types (2)

Buyer-seller example from [Honda et al 2008]

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 46 / 51

Multiparty session types (3)

Global type for buyer-seller

1 B1→ S : title.

2 S → B1: quote.

3 S → B2: quote.

4 B1→ B2: quote.

5 B2→ S :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ok ∶ B2→ S ∶ address.
S → B2 ∶ date.end

quit ∶ end

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 47 / 51

Multiparty session types (4)

Local type for B1

S!title.S?quote.B2!quote

Local type for B2

S?quote.B1?quote.S ⊕ {ok ∶ S!address.S?date.end ,quit ∶ end}

Local type checking as for binary session types

Conditions on global type guarantee independance of participating processes

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 48 / 51

Multiparty session types (4)

Local type for B1

S!title.S?quote.B2!quote

Local type for B2

S?quote.B1?quote.S ⊕ {ok ∶ S!address.S?date.end ,quit ∶ end}

Local type checking as for binary session types

Conditions on global type guarantee independance of participating processes

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 48 / 51

Multiparty session types (4)

Local type for B1

S!title.S?quote.B2!quote

Local type for B2

S?quote.B1?quote.S ⊕ {ok ∶ S!address.S?date.end ,quit ∶ end}

Local type checking as for binary session types

Conditions on global type guarantee independance of participating processes

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 48 / 51

Outline

1 Types

2 Session Types

3 Phenomena
Deadlocks
Subtyping
Extensions
Dependent Types
Multiparty Session Types

4 Conclusion

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 49 / 51

Conclusion

powerful formalism to model protocols

context π-calculus and concurrent λ-calculus

reasonable implementations in several languages (Java, Scala, OCaml, Haskell, etc), but
none has all guarantees

related to contracts, type state, etc

many extensions

Further reading

S. J. Gay and A. Ravara (editors). Behavioural Types: from Theory to Tools. River Publishers,
2017.

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 50 / 51

Thank you!

Peter Thiemann (University of Freiburg) Types for Protocols August 2019 51 / 51

	Types
	Session Types
	Phenomena
	Deadlocks
	Subtyping
	Extensions
	Dependent Types
	Multiparty Session Types

	Conclusion

