Stephanie Weirich

University of Pennsylvania

https://github.com/sweirich/dth
@fancytypes

What is Dependent Type Theory?

* Originally, logical foundation for
mathematics (Martin-Lof)

* Now, basis of modern proof assistants
such as Coq, Agda, and Lean

* Connected to programming through the
Curry-Howard isomorphism: propositions
are types, proofs are programs

What is Haskell?)

* Originally, research programming language
(Hudak, Wadler, Peyton Jones, et al. 1990)

* Now, research programming language with users
(industrial users, researchers, educators, hobbyists...)
* Influential
* New languages based on Haskell
(Elm, PureScript, Eta, Frege)
* Existing languages adopt ideas from Haskell
(HKT, type classes, purity, ADTs, ...)

JE

Dependent types in Haskell?

| Dependent types and programming

Google

dependent types

dependent types

dependent types haskell

dependent types c++

dependent types scala

dependent types example

dependent types rust

dependent types typescript

dependent types idris

dependent types in practical programming
dependent types f#

Google Search I'm Feeling Lucky

(-

A Java geek

travel.cloud Caen) gnin. [Getstarted

9 ’A:d'fw:‘yn‘es,_“E‘ | CLOJURE,DEPENDENT TYPES,PROGRAMMING BY CONTRACT
Learning Clojure: dependent types and
contract-based programming

Why you should care about dependently
typed programming

eoce The Future of Programmingis X =+

& C & AMedium Corporation [US] | https://medium.com/background-thread/the-future-of-programming-i... % QO @©® @® 3

Signin | Getstarted

HOME ARCHIVE ‘ PWOTD

Marin Bencevi¢ |
“, i0S develop
Aug 2 - 8 min read

The Future of Programming is Dependent
Types—Programming Word of the Day

Sometimes it feels like programming languages didn’t really change from the
60s up to now. When I feel that, I often remind
features we have now that make our lives easi¢ @ Why Dependently Typed Progr X +

integrated debugger, unit tests, static analysis,

anguage nerd

L serie dedicated to learning the Clojure JVM language. Previous

& C ® NotSecure | ejenk.com/blog/why-dependently-typed-pr.. ¥%* O @® @® %
others. Language progress is slow and iterativ¢

will come in and change the game.

Today I want to tell you about the next step in

still researching this technology, but it has the The M arket Completionist

languages soon. And it all starts with one of th .
] Thoughts on finance, economics, and beyond
computer science: types.

The World of Types
Types are one of those things that are so integi Why Dependently Typed Programming Will (One Day)

‘ hardly ever think about the concept itself. Why Rock Your World

around it suddenly turns into a string ? What ; .
- N - o - R April 26, 2014 — Evan Jenkins

|DependeniHuskeH

A set of language extensions for GHC that provides
the ability to program as if the language had
dependent types

{-# LANGUAGE DataKinds, TypeFamilies, PolyKinds, TypeInType,
GADTs, RankNTypes, ScopedTypeVariables, TypeApplications,
TemplateHaskell, UndecidableInstances, InstanceSigs,
TypeSynonymInstances, TypeOperators, KindSignatures,
MultiParamTypeClasses, FunctionalDependencies,
TypeFamilyDependencies, AllowAmbiguousTypes,
FlexibleContexts, FlexibleInstances #-}

Why Dependent Types?

Domain-specific type checkers

Regular expression capture groups

*Use regexps to recognize and parse a file path
"dth/regexp/Example .

* Return captured results in a dictionary
-Basename "Example”

R s

-Directories in path "dth" "regexp"”

* Challenge: Type system verifies dictionary access

Example: a regexp for parsing file paths

/? -- optional leading "/"
((2P<dir>[~/]+)/)* -- any number of dirs
(?2P<base>["*\./]1+) -- basename

(BPREXES\ . . +))? -- optional extension

Named capture groups marked by (?P<name>regexp)

Demo

path =
[re|/?2((?2P<dir>[~/]+)/)*(?P<base>[~\./]+) (?P<ext>\..*)?]|]
filename =

"dth/regexp/Example.hs™

eoe L Example.is

path = [re|/?((?P<dir>[*/]+)/)*(?P<base>["\./]+) (?P<ext>\..*)?|]

—— match the regular expression against the string
—— returning a dictionary of the matched substrings
filename = "dth/regexp/Example.hs"}

dict = fromJust (match path filename)

—— Access the components of the dictionary

x = getField @"base" dict
y = getField @"dir" dict
z = getField @"ext" dict

—:—— Example.hs 34% (23,34) Git:master (Haskell Interactive)

U:xx— *dependent-regexpx Bot (273,3) (Interactive-Haskell)
(No changes need to be saved)

What are we asking for, when we
ask for dependent types?

l Four Capabilities of Dependent Type Systems

7. Z%@ Wm‘m
. /%gé/%@
. Dm%—@ zéfm

il

We can use the type

2 C @fM/{/ system to implement
/ a domain-specific
compile-time analysis

How does this work?

A> path =
[re|/?((?P<dir>[~/]+)/)*(?P<base>[~/.]+) (?P<ext>\..*)?]|]

A> :t path
R {'("base", Once), '("dir", Many), '("ext", Opt)}
Y

Regular expression type includes a

"Occurrence Map" computed by the type checker

data Occ = Once | Opt | Many

How does this work? 1. Compile-time parsing

A> path =
[re|/?((?P<dir>[~/]+)/)*(?P<base>[~/.]+) (?P<ext>\..*)?]|]

A> °t pafh

ath 7 nopt_(rnchar */') , u . .« P g
RE] S B (DR Yotk b ias MARY »/ 5 o¥kier PR +/ 1)
“rseq’ rmark @"base" (rplus (rnot "./"))
“rseq’ ropt (rmark @"ext" (rchar '.' “rseq rstar rany))

2. Type functions run by type checker

-- accepts single char only, captures nothing
rchar :: Char -> RE "[]

-- sequence nr;r,

rseq :: RE s1 -> RE s2 -> RE (Merge sl s2)

-- iteration r*

rstar :: RE s -> RE (Repeat s)

-- marked subexpression

rmark :: Vk s. RE s -> RE (Merge (One k) s)

Type functions via type families

-- iteration r*
rstar :: RE s -> RE (Repeat s)

Repeat (s :: OccMap) :: OccMap

Repeat '[]
Repeat ((k,o0) : t)

'[1]
(k, Many) : Repeat t

Demo

rl = rmark @"a" (rstar rany)
r2 = rmark @"b" rany
exl = rl rseq r2

e0e L4 Example.hs

—— Type computation examples

ra = rmark @'a" (rstar rany)

rb = rmark @"b" rany

|

—:——— Example.hs 64% (51,0) Git:master (Haskell Interactive)
:endent.hs, interpreted)

[3 of 4] Compiling RegexpParser (/Users/sweirich/github/dth/regexp/src/RegexpPar:

:ser.hs, interpreted)

[4 of 4] Compiling RegexpExample (Example.hs, interpreted)
0k, 4 modules loaded.

Collecting type info for 4 module(s)

A>] \

U:x*x— *dependent-regexpx Bot (330,3) (Interactive—-Haskell)
Tags generated.

Type indices
/ e constrain values
%& and guide

computation

How does this work?

A> :t dict
Dict '['("base", Once),'("dir", Many), '("ext", Opt)]

A> getField @"ext" dict Access resolved at compile
Just "hs" time by type-level symbol

A> getField @"f" dict Custom error message
<interactive>:28:1: error:

e I couldn't find a capture group named 'f' in
{base, dir, ext}

Types Constrain Data

A> :t dict
Dict '['("base", Once),'("dir", Many), '("ext", Opt)]

* Know dict must be a sequence of entries
E "Example" :> E ["dth","regexp"”] :> E (Just "hs") :> Nil
* Entries do not store keys

* From type, know "base" is first entry

* Field access resolved at compile time

Types Constrain Data with GADTs

A> :t dict
Dict '['("base", Once),'("dir", Many), '("ext", Opt)]

data Dict :: OccMap -> Type where
Nil :: Dict '[]
(:>) :: Entry s o -> Dict tl1 -> Dict ('(s,0) : tl)

* Know dict must be a sequence of entries
E "Example" :> E ["dth","regexp"] :> E (Just "hs") :> Nil

Types Constrain Data with Type Families

X :: Entry "ext” Opt type family OT (o :: Occ)
X = E (Just ".hs") where

OT Once = String

OT Opt = Maybe String
data Entry :: Symbol -> Occ -> Type OT Many = [String]

where

E :: OT o -> Entry k o

DM & %{ We can use the
B / a same data in types

and at runtime

How does this work?

dict :: Dict '['("base", Once),'("dir", Many),'("ext"™, Opt)]
dict =
E "Example" :> E ["dth", "regexp"] :> E (Just "hs") :> Nil

A> print dict
{ base="Example", dir=["dth","regexp"], ext=Just ".hs" }

Dependent types: I

showEntry ::

showEntry k o (E x) =

showData ::

showData
showData
showData

Once
Opt
Many

show
show
show

Mmk ->0MNo -> Entry k o -> String

showSym k ++ "=" ++ showData o x

Mo -> 0T o -> String

:: String -> String
:: Maybe String -> String
:: [String] -> String

GHC's take: Singletons

showEntry ::

showEntry k o (E x) =

showData ::

showData
showData
showData

SOnce
SOpt
SMany

show
show
show

showSym k ++

Sing o -> OT o -> String

data instance Sing (o ::
SOnce ::

SOpt

Sing k -> Sing o -> Entry k o -> String

Sing Once

:: Sing Opt
SMany ::

Sing Many

++ showData o Xx

Occ) where

, Type checker must
(z/j/wo]) //’M reason about program
equivalence, and
sometimes needs help

Working with type indices

RE :: OccMap -> Type
Rempty :: RE '[]
Rseq :: RE s1 -> RE s2 -> RE (Merge sl s2)
Rstar :: RE s -> RE (Repeat s)

rseq :: RE s1 -> RE s2 -> RE (Merge sl s2)

>
rseq Rempty r2 = r2 -- Merge "[] s2 ~ s2
rseq rl Rempty = ri
rseq rl r2 = Rseq ril1 r2

Working with type indices

Repeat (s :: OccMap) :: OccMap
Repeat '[] '[1]
Repeat ((k,0) : t) (k, Many) : Repeat t

rstar :: RE s -> RE (Repeat s)

rstar Rempty = Rempty -- need: Repeat '[] ~ '[]
rstar (Rstar r) = Rstar r -- ooOps!
rstar r = Rstar r Could not deduce: Repeat s ~ s

from the context: s ~ Repeat sl

Need: Repeat (Repeat sl1l) ~ Repeat sl
Not true by definition. But provable!

Type classes to the rescue

class (Repeat (Repeat s) ~ Repeat s)

=> Wf (s :: OccMap)
instance Wf "[] -- base case
instance (Wf s) => Wf ('(n,0) : s) -- inductive step

rstar :: WFf s => RE s -> RE (Repeat s)
rstar Rempty = Rempty
rstar (Rstar r) = Rstar r

-- have: Repeat (Repeat sl1l) ~ Repeat sl
rstar r = Rstar r

Type classes to the rescue

class (Repeat (Repeat s) ~ Repeat s,

s ~ Alt s s,

Merge s (Repeat s) ~ Repeat s)

=> Wf (s :: OccMap)
instance Wf '[] -- base case
instance (Wf s) => Wf ('(n,0) : s) -- inductive step

| Summary: Dependent types have a lot to offer

7. Z%@ Wm‘m
. /%@ﬁ/%@
. Dm%—@ zéfm

il

Haskell is a good fit for dependent types

* Similarities make integration possible
* Computation based on polymorphic lambda calculus
* Type system encourages purity

* Differences tell us about the design space

* Full language available for programming, many
examples in-the-wild

* Lack of termination analysis discourages proof-heavy use,
pushes for new approaches

https://github.com/sweirich/dth

Thanks to: Simon Peyton Jones, Richard Eisenberg, Dimitrios Vytiniotis, Vilhelm
Sioberg, Brent Yorgey, Chris Casinghino, Geoffrey Washburn, lavor Diatchki,
Conor McBride, Adam Gundry, Joachim Breitner, Julien Cretin, José Pedro
Magalhdes, Steve Zdancewic, Joachim Breitner, Antoine Voizard, Pedro Amorim

and NSF

