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What is Dependent Type Theory?
•Originally, logical foundation for 
mathematics (Martin-Löf)
•Now, basis of modern proof assistants 
such as Coq, Agda, and Lean
•Connected to programming through the 
Curry-Howard isomorphism:  propositions 
are types, proofs are programs

Π



What is Haskell?
•Originally, research programming language
(Hudak, Wadler, Peyton Jones, et al. 1990)
•Now, research programming language with users  
(industrial users, researchers, educators, hobbyists…) 
• Influential
•New languages based on Haskell 
(Elm, PureScript, Eta, Frege)
• Existing languages adopt ideas from Haskell
(HKT, type classes, purity, ADTs, …)



Dependent types in Haskell?

Πλ



Dependent types and programming 



Hype



Dependent Haskell
A set of language extensions for GHC that provides 
the ability to program as if the language had 
dependent types

{-# LANGUAGE DataKinds, TypeFamilies, PolyKinds, TypeInType, 
GADTs, RankNTypes, ScopedTypeVariables, TypeApplications, 
TemplateHaskell, UndecidableInstances, InstanceSigs, 
TypeSynonymInstances, TypeOperators, KindSignatures, 
MultiParamTypeClasses, FunctionalDependencies, 
TypeFamilyDependencies, AllowAmbiguousTypes, 
FlexibleContexts, FlexibleInstances #-}



Why Dependent Types?
Domain-specific type checkers



Regular expression capture groups
•Use regexps to recognize and parse a file path

"dth/regexp/Example.hs"
•Return captured results in a dictionary

-Basename "Example"
-Extension "hs"
-Directories in path "dth" "regexp"

•Challenge: Type system verifies dictionary access



Example: a regexp for parsing file paths

Named capture groups marked by (?P<name>regexp)

/? -- optional leading "/"
((?P<dir>[^/]+)/)* -- any number of dirs
(?P<base>[^\./]+) -- basename
(?P<ext>\..*)? -- optional extension



Demo

path = 

[re|/?((?P<dir>[^/]+)/)*(?P<base>[^\./]+)(?P<ext>\..*)?|]

filename =

"dth/regexp/Example.hs" 





What are we asking for, when we 
ask for dependent types?



Four Capabilities of  Dependent Type Systems
1.Type computation

2.Indexed types

3.Double-duty data

4.Equivalence proofs



Type Computation We can use the type 
system to implement 
a domain-specific 

compile-time analysis



How does this work?
λ> path = 
[re|/?((?P<dir>[^/]+)/)*(?P<base>[^/.]+)(?P<ext>\..*)?|]

λ> :t path
RE '['("base", Once), '("dir", Many), '("ext", Opt)]

Regular expression type includes a 
"Occurrence Map" computed by the type checker  

data Occ = Once | Opt | Many



How does this work?

> path = ropt (rchar '/') 
`rseq` rstar (rmark @"dir" (rplus (rnot "/")) `rseq` rchar '/')
`rseq` rmark @"base" (rplus (rnot "./"))
`rseq` ropt (rmark @"ext" (rchar '.' `rseq` rstar rany))

1. Compile-time parsing
λ> path = 
[re|/?((?P<dir>[^/]+)/)*(?P<base>[^/.]+)(?P<ext>\..*)?|]

λ> :t path
RE '['("base", Once), '("dir", Many), '("ext", Opt)]



2. Type functions run by type checker
-- accepts single char only, captures nothing
rchar :: Char -> RE '[]
-- sequence  r1r2
rseq :: RE s1 -> RE s2 -> RE (Merge s1 s2)
-- iteration r* 
rstar :: RE s -> RE (Repeat s)
-- marked subexpression
rmark :: ∀k s. RE s -> RE (Merge (One k) s)



Type functions via type families
-- iteration r* 
rstar :: RE s -> RE (Repeat s)

type family Repeat (s :: OccMap) :: OccMap
where   

Repeat '[]         = '[]   
Repeat ((k,o) : t) = (k, Many) : Repeat t



Demo
r1 = rmark @"a" (rstar rany)
r2 = rmark @"b" rany
ex1 = r1 `rseq` r2





Indexed types Type indices 
constrain values 

and guide 
computation



How does this work?
λ> :t dict
Dict '['("base", Once),'("dir", Many), '("ext", Opt)] 

λ> getField @"ext" dict
Just "hs"

λ> getField @"f" dict
<interactive>:28:1: error:    

• I couldn't find a capture group named 'f' in         
{base, dir, ext}

Access resolved at compile 
time by type-level symbol

Custom error message



Types Constrain Data

• Know dict must be a sequence of entries
E "Example" :> E ["dth","regexp"] :> E (Just "hs") :> Nil

• Entries do not store keys
• From type, know "base" is first entry
• Field access resolved at compile time

λ> :t dict

Dict '['("base", Once),'("dir", Many),'("ext", Opt)]



Types Constrain Data with GADTs

data Dict :: OccMap -> Type where   
Nil  :: Dict '[]   
(:>) :: Entry s o -> Dict tl -> Dict ('(s,o) : tl)

• Know dict must be a sequence of entries
E "Example" :> E ["dth","regexp"] :> E (Just "hs") :> Nil

λ> :t dict

Dict '['("base", Once),'("dir", Many),'("ext", Opt)] 



Types Constrain Data with Type Families
type family OT (o :: Occ)
where  
OT Once = String  
OT Opt = Maybe String  
OT Many = [String]

x :: Entry "ext" Opt

x = E (Just ".hs")

data Entry :: Symbol -> Occ -> Type 

where 

E ::  OT o -> Entry k o



Double-duty data We can use the 
same data in types 

and at runtime



How does this work?
dict :: Dict '['("base", Once),'("dir", Many),'("ext", Opt)]

dict = 

E "Example" :> E ["dth", "regexp"] :> E (Just "hs") :> Nil

λ> print dict

{ base="Example", dir=["dth","regexp"], ext=Just ".hs" }



Dependent types: Π
showEntry :: Π k -> Π o -> Entry k o -> String
showEntry k o (E x) = showSym k ++ "=" ++ showData o x   

showData :: Π o -> OT o -> String
showData Once = show :: String -> String
showData Opt  = show  :: Maybe String -> String
showData Many = show  :: [String] -> String



GHC's take: Singletons
showEntry :: Sing k -> Sing o -> Entry k o -> String
showEntry k o (E x) = showSym k ++ "=" ++ showData o x

showData :: Sing o -> OT o -> String    
showData SOnce = show
showData SOpt = show
showData SMany = show

data instance Sing (o :: Occ) where
SOnce :: Sing Once
SOpt :: Sing Opt
SMany :: Sing Many



Equivalence proofs Type checker must 
reason about program 

equivalence, and 
sometimes needs help



Working with type indices
data RE :: OccMap -> Type where
Rempty :: RE '[]
Rseq :: RE s1 -> RE s2 -> RE (Merge s1 s2)
Rstar :: RE s -> RE (Repeat s)
…

rseq :: RE s1 -> RE s2 -> RE (Merge s1 s2)
rseq Rempty r2 = r2
rseq r1 Rempty = r1
rseq r1 r2     = Rseq r1 r2

-- Merge '[] s2 ~ s2  



Working with type indices

rstar :: RE s -> RE (Repeat s)
rstar Rempty = Rempty -- need: Repeat '[] ~ '[]
rstar (Rstar r) = Rstar r
rstar r         = Rstar r Could not deduce: Repeat s ~ s      

from the context: s ~ Repeat s1 

Need:  Repeat (Repeat s1) ~ Repeat s1
Not true by definition.  But provable!

-- oops!

type family Repeat (s :: OccMap) :: OccMap where   
Repeat '[]         = '[]   
Repeat ((k,o) : t) = (k, Many) : Repeat t



Type classes to the rescue
class (Repeat (Repeat s) ~ Repeat s)

=> Wf (s :: OccMap)
instance Wf '[]                    -- base case
instance (Wf s) => Wf ('(n,o) : s) –- inductive step

rstar :: Wf s => RE s -> RE (Repeat s)
rstar Rempty = Rempty
rstar (Rstar r) = Rstar r   

-- have: Repeat (Repeat s1) ~ Repeat s1
rstar r         = Rstar r



Type classes to the rescue
class (Repeat (Repeat s) ~ Repeat s, 

s ~ Alt s s, 
Merge s (Repeat s) ~ Repeat s)
=> Wf (s :: OccMap)

instance Wf '[]                    -- base case
instance (Wf s) => Wf ('(n,o) : s) –- inductive step



Summary: Dependent types have a lot  to offer
1.Type computation

2.Indexed types

3.Double-duty data

4.Equivalence proofs



Haskell is a good fit for dependent types
•Similarities make integration possible
• Computation based on polymorphic lambda calculus
• Type system encourages purity

•Differences tell us about the design space
• Full language available for programming, many 

examples in-the-wild
• Lack of termination analysis discourages proof-heavy use, 

pushes for new approaches
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