
Dependent Types in Haskell

Stephanie Weirich
University of Pennsylvania
https://github.com/sweirich/dth
@fancytypes

What is Dependent Type Theory?
•Originally, logical foundation for
mathematics (Martin-Löf)
•Now, basis of modern proof assistants
such as Coq, Agda, and Lean
•Connected to programming through the
Curry-Howard isomorphism: propositions
are types, proofs are programs

Π

What is Haskell?
•Originally, research programming language
(Hudak, Wadler, Peyton Jones, et al. 1990)
•Now, research programming language with users
(industrial users, researchers, educators, hobbyists…)
• Influential
•New languages based on Haskell
(Elm, PureScript, Eta, Frege)
• Existing languages adopt ideas from Haskell
(HKT, type classes, purity, ADTs, …)

Dependent types in Haskell?

Πλ

Dependent types and programming

Hype

Dependent Haskell
A set of language extensions for GHC that provides
the ability to program as if the language had
dependent types

{-# LANGUAGE DataKinds, TypeFamilies, PolyKinds, TypeInType,
GADTs, RankNTypes, ScopedTypeVariables, TypeApplications,
TemplateHaskell, UndecidableInstances, InstanceSigs,
TypeSynonymInstances, TypeOperators, KindSignatures,
MultiParamTypeClasses, FunctionalDependencies,
TypeFamilyDependencies, AllowAmbiguousTypes,
FlexibleContexts, FlexibleInstances #-}

Why Dependent Types?
Domain-specific type checkers

Regular expression capture groups
•Use regexps to recognize and parse a file path

"dth/regexp/Example.hs"
•Return captured results in a dictionary

-Basename "Example"
-Extension "hs"
-Directories in path "dth" "regexp"

•Challenge: Type system verifies dictionary access

Example: a regexp for parsing file paths

Named capture groups marked by (?P<name>regexp)

/? -- optional leading "/"
((?P<dir>[^/]+)/)* -- any number of dirs
(?P<base>[^\./]+) -- basename
(?P<ext>\..*)? -- optional extension

Demo

path =

[re|/?((?P<dir>[^/]+)/)*(?P<base>[^\./]+)(?P<ext>\..*)?|]

filename =

"dth/regexp/Example.hs"

What are we asking for, when we
ask for dependent types?

Four Capabilities of Dependent Type Systems
1.Type computation

2.Indexed types

3.Double-duty data

4.Equivalence proofs

Type Computation We can use the type
system to implement
a domain-specific

compile-time analysis

How does this work?
λ> path =
[re|/?((?P<dir>[^/]+)/)*(?P<base>[^/.]+)(?P<ext>\..*)?|]

λ> :t path
RE '['("base", Once), '("dir", Many), '("ext", Opt)]

Regular expression type includes a
"Occurrence Map" computed by the type checker

data Occ = Once | Opt | Many

How does this work?

> path = ropt (rchar '/')
`rseq` rstar (rmark @"dir" (rplus (rnot "/")) `rseq` rchar '/')
`rseq` rmark @"base" (rplus (rnot "./"))
`rseq` ropt (rmark @"ext" (rchar '.' `rseq` rstar rany))

1. Compile-time parsing
λ> path =
[re|/?((?P<dir>[^/]+)/)*(?P<base>[^/.]+)(?P<ext>\..*)?|]

λ> :t path
RE '['("base", Once), '("dir", Many), '("ext", Opt)]

2. Type functions run by type checker
-- accepts single char only, captures nothing
rchar :: Char -> RE '[]
-- sequence r1r2
rseq :: RE s1 -> RE s2 -> RE (Merge s1 s2)
-- iteration r*
rstar :: RE s -> RE (Repeat s)
-- marked subexpression
rmark :: ∀k s. RE s -> RE (Merge (One k) s)

Type functions via type families
-- iteration r*
rstar :: RE s -> RE (Repeat s)

type family Repeat (s :: OccMap) :: OccMap
where

Repeat '[] = '[]
Repeat ((k,o) : t) = (k, Many) : Repeat t

Demo
r1 = rmark @"a" (rstar rany)
r2 = rmark @"b" rany
ex1 = r1 `rseq` r2

Indexed types Type indices
constrain values

and guide
computation

How does this work?
λ> :t dict
Dict '['("base", Once),'("dir", Many), '("ext", Opt)]

λ> getField @"ext" dict
Just "hs"

λ> getField @"f" dict
<interactive>:28:1: error:

• I couldn't find a capture group named 'f' in
{base, dir, ext}

Access resolved at compile
time by type-level symbol

Custom error message

Types Constrain Data

• Know dict must be a sequence of entries
E "Example" :> E ["dth","regexp"] :> E (Just "hs") :> Nil

• Entries do not store keys
• From type, know "base" is first entry
• Field access resolved at compile time

λ> :t dict

Dict '['("base", Once),'("dir", Many),'("ext", Opt)]

Types Constrain Data with GADTs

data Dict :: OccMap -> Type where
Nil :: Dict '[]
(:>) :: Entry s o -> Dict tl -> Dict ('(s,o) : tl)

• Know dict must be a sequence of entries
E "Example" :> E ["dth","regexp"] :> E (Just "hs") :> Nil

λ> :t dict

Dict '['("base", Once),'("dir", Many),'("ext", Opt)]

Types Constrain Data with Type Families
type family OT (o :: Occ)
where
OT Once = String
OT Opt = Maybe String
OT Many = [String]

x :: Entry "ext" Opt

x = E (Just ".hs")

data Entry :: Symbol -> Occ -> Type

where

E :: OT o -> Entry k o

Double-duty data We can use the
same data in types

and at runtime

How does this work?
dict :: Dict '['("base", Once),'("dir", Many),'("ext", Opt)]

dict =

E "Example" :> E ["dth", "regexp"] :> E (Just "hs") :> Nil

λ> print dict

{ base="Example", dir=["dth","regexp"], ext=Just ".hs" }

Dependent types: Π
showEntry :: Π k -> Π o -> Entry k o -> String
showEntry k o (E x) = showSym k ++ "=" ++ showData o x

showData :: Π o -> OT o -> String
showData Once = show :: String -> String
showData Opt = show :: Maybe String -> String
showData Many = show :: [String] -> String

GHC's take: Singletons
showEntry :: Sing k -> Sing o -> Entry k o -> String
showEntry k o (E x) = showSym k ++ "=" ++ showData o x

showData :: Sing o -> OT o -> String
showData SOnce = show
showData SOpt = show
showData SMany = show

data instance Sing (o :: Occ) where
SOnce :: Sing Once
SOpt :: Sing Opt
SMany :: Sing Many

Equivalence proofs Type checker must
reason about program

equivalence, and
sometimes needs help

Working with type indices
data RE :: OccMap -> Type where
Rempty :: RE '[]
Rseq :: RE s1 -> RE s2 -> RE (Merge s1 s2)
Rstar :: RE s -> RE (Repeat s)
…

rseq :: RE s1 -> RE s2 -> RE (Merge s1 s2)
rseq Rempty r2 = r2
rseq r1 Rempty = r1
rseq r1 r2 = Rseq r1 r2

-- Merge '[] s2 ~ s2

Working with type indices

rstar :: RE s -> RE (Repeat s)
rstar Rempty = Rempty -- need: Repeat '[] ~ '[]
rstar (Rstar r) = Rstar r
rstar r = Rstar r Could not deduce: Repeat s ~ s

from the context: s ~ Repeat s1

Need: Repeat (Repeat s1) ~ Repeat s1
Not true by definition. But provable!

-- oops!

type family Repeat (s :: OccMap) :: OccMap where
Repeat '[] = '[]
Repeat ((k,o) : t) = (k, Many) : Repeat t

Type classes to the rescue
class (Repeat (Repeat s) ~ Repeat s)

=> Wf (s :: OccMap)
instance Wf '[] -- base case
instance (Wf s) => Wf ('(n,o) : s) –- inductive step

rstar :: Wf s => RE s -> RE (Repeat s)
rstar Rempty = Rempty
rstar (Rstar r) = Rstar r

-- have: Repeat (Repeat s1) ~ Repeat s1
rstar r = Rstar r

Type classes to the rescue
class (Repeat (Repeat s) ~ Repeat s,

s ~ Alt s s,
Merge s (Repeat s) ~ Repeat s)
=> Wf (s :: OccMap)

instance Wf '[] -- base case
instance (Wf s) => Wf ('(n,o) : s) –- inductive step

Summary: Dependent types have a lot to offer
1.Type computation

2.Indexed types

3.Double-duty data

4.Equivalence proofs

Haskell is a good fit for dependent types
•Similarities make integration possible
• Computation based on polymorphic lambda calculus
• Type system encourages purity

•Differences tell us about the design space
• Full language available for programming, many

examples in-the-wild
• Lack of termination analysis discourages proof-heavy use,

pushes for new approaches

Thanks to: Simon Peyton Jones, Richard Eisenberg, Dimitrios Vytiniotis, Vilhelm
Sjöberg, Brent Yorgey, Chris Casinghino, Geoffrey Washburn, Iavor Diatchki,
Conor McBride, Adam Gundry, Joachim Breitner, Julien Cretin, José Pedro
Magalhães, Steve Zdancewic, Joachim Breitner, Antoine Voizard, Pedro Amorim
and NSF

https://github.com/sweirich/dth

fin

