Stephanie Weirich

University of Pennsylvania

https://github.com/sweirich/dth
@fancytypes




What is Dependent Type Theory?

* Originally, logical foundation for
mathematics (Martin-Lof)

* Now, basis of modern proof assistants
such as Coq, Agda, and Lean

* Connected to programming through the
Curry-Howard isomorphism: propositions
are types, proofs are programs



What is Haskell? )

* Originally, research programming language
(Hudak, Wadler, Peyton Jones, et al. 1990)

* Now, research programming language with users
(industrial users, researchers, educators, hobbyists...)
* Influential
* New languages based on Haskell
(Elm, PureScript, Eta, Frege)
* Existing languages adopt ideas from Haskell
(HKT, type classes, purity, ADTs, ...)
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Dependent types in Haskell?
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|DependeniHuskeH

A set of language extensions for GHC that provides
the ability to program as if the language had
dependent types

{-# LANGUAGE DataKinds, TypeFamilies, PolyKinds, TypeInType,
GADTs, RankNTypes, ScopedTypeVariables, TypeApplications,
TemplateHaskell, UndecidableInstances, InstanceSigs,
TypeSynonymInstances, TypeOperators, KindSignatures,
MultiParamTypeClasses, FunctionalDependencies,
TypeFamilyDependencies, AllowAmbiguousTypes,
FlexibleContexts, FlexibleInstances #-}



Why Dependent Types?

Domain-specific type checkers



Regular expression capture groups

*Use regexps to recognize and parse a file path
"dth/regexp/Example .

* Return captured results in a dictionary
-Basename "Example”

R s

-Directories in path "dth" "regexp"”

* Challenge: Type system verifies dictionary access



Example: a regexp for parsing file paths

/? -- optional leading "/"
((2P<dir>[~/]+)/)* -- any number of dirs
(?2P<base>["*\./]1+) -- basename

(BPREXES\ . . +))? -- optional extension

Named capture groups marked by ( ?P<name>regexp)



Demo

path =
[re|/?2((?2P<dir>[~/]+)/)*(?P<base>[~\./]+) (?P<ext>\..*)?]|]
filename =

"dth/regexp/Example.hs™



eoe L Example.is

path = [re|/?((?P<dir>[*/]+)/)*(?P<base>["\./]+) (?P<ext>\..*)?|]

—— match the regular expression against the string
—— returning a dictionary of the matched substrings
filename = "dth/regexp/Example.hs"}

dict = fromJust (match path filename)

—— Access the components of the dictionary

x = getField @"base" dict
y = getField @"dir" dict
z = getField @"ext" dict

—:—— Example.hs 34% (23,34) Git:master (Haskell Interactive)

U:xx— *dependent-regexpx Bot (273,3) (Interactive-Haskell)
(No changes need to be saved)




What are we asking for, when we
ask for dependent types?



l Four Capabilities of Dependent Type Systems
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We can use the type

2 C @fM/{/ system to implement
/ a domain-specific
compile-time analysis




How does this work?

A> path =
[re|/?((?P<dir>[~/]+)/)*(?P<base>[~/.]+) (?P<ext>\..*)?]|]

A> :t path
R {'("base", Once), '("dir", Many), '("ext", Opt)}
Y

Regular expression type includes a

"Occurrence Map" computed by the type checker

data Occ = Once | Opt | Many



How does this work? 1. Compile-time parsing

A> path =
[re|/?((?P<dir>[~/]+)/)*(?P<base>[~/.]+) (?P<ext>\..*)?]|]

A> °t pafh

ath 7 nopt_(rnchar */') ,  u . .« P g
RE ] S B (DR Yotk b ias MARY »/ 5 o¥kier PR +/ 1)
“rseq’ rmark @"base" (rplus (rnot "./"))
“rseq’ ropt (rmark @"ext" (rchar '.' “rseq rstar rany))




2. Type functions run by type checker

-- accepts single char only, captures nothing
rchar :: Char -> RE "[]

-- sequence nr;r,

rseq :: RE s1 -> RE s2 -> RE (Merge sl s2)

-- iteration r*

rstar :: RE s -> RE (Repeat s)

-- marked subexpression

rmark :: Vk s. RE s -> RE (Merge (One k) s)



Type functions via type families

-- iteration r*
rstar :: RE s -> RE (Repeat s)

Repeat (s :: OccMap) :: OccMap

Repeat '[]
Repeat ((k,o0) : t)

'[1]
(k, Many) : Repeat t



Demo

rl = rmark @"a" (rstar rany)
r2 = rmark @"b" rany
exl = rl rseq r2



e0e L4 Example.hs

—— Type computation examples

ra = rmark @'a" (rstar rany)

rb = rmark @"b" rany

|

—:——— Example.hs 64% (51,0) Git:master (Haskell Interactive)
:endent.hs, interpreted )

[3 of 4] Compiling RegexpParser ( /Users/sweirich/github/dth/regexp/src/RegexpPar:

:ser.hs, interpreted )

[4 of 4] Compiling RegexpExample ( Example.hs, interpreted )
0k, 4 modules loaded.

Collecting type info for 4 module(s)

A> ] \

U:x*x— *dependent-regexpx Bot (330,3) (Interactive—-Haskell)
Tags generated.




Type indices
/ e constrain values
%& and guide

computation




How does this work?

A> :t dict
Dict '['("base", Once),'("dir", Many), '("ext", Opt)]

A> getField @"ext" dict Access resolved at compile
Just "hs" time by type-level symbol

A> getField @"f" dict Custom error message
<interactive>:28:1: error:

e I couldn't find a capture group named 'f' in
{base, dir, ext}



Types Constrain Data

A> :t dict
Dict '['("base", Once),'("dir", Many), '("ext", Opt)]

* Know dict must be a sequence of entries
E "Example" :> E ["dth","regexp"”] :> E (Just "hs") :> Nil
* Entries do not store keys

* From type, know "base" is first entry

* Field access resolved at compile time



Types Constrain Data with GADTs

A> :t dict
Dict '['("base", Once),'("dir", Many), '("ext", Opt)]

data Dict :: OccMap -> Type where
Nil :: Dict '[]
(:>) :: Entry s o -> Dict tl1 -> Dict ('(s,0) : tl)

* Know dict must be a sequence of entries
E "Example" :> E ["dth","regexp"] :> E (Just "hs") :> Nil



Types Constrain Data with Type Families

X :: Entry "ext” Opt type family OT (o :: Occ)
X = E (Just ".hs") where

OT Once = String

OT Opt = Maybe String
data Entry :: Symbol -> Occ -> Type OT Many = [String]

where

E :: OT o -> Entry k o



DM & %{ We can use the
B / a same data in types

and at runtime




How does this work?

dict :: Dict '['("base", Once),'("dir", Many),'("ext"™, Opt)]
dict =
E "Example" :> E ["dth", "regexp"] :> E (Just "hs") :> Nil

A> print dict
{ base="Example", dir=["dth","regexp"], ext=Just ".hs" }



Dependent types: I

showEntry ::

showEntry k o (E x) =

showData ::

showData
showData
showData

Once
Opt
Many

show
show
show

Mmk ->0MNo -> Entry k o -> String

showSym k ++ "=" ++ showData o x

Mo -> 0T o -> String

:: String -> String
:: Maybe String -> String
:: [String] -> String



GHC's take: Singletons

showEntry ::

showEntry k o (E x) =

showData ::

showData
showData
showData

SOnce
SOpt
SMany

show
show
show

showSym k ++

Sing o -> OT o -> String

data instance Sing (o ::
SOnce ::

SOpt

Sing k -> Sing o -> Entry k o -> String

Sing Once

:: Sing Opt
SMany ::

Sing Many

++ showData o Xx

Occ) where



, Type checker must
(z/j/wo]) //’M reason about program
equivalence, and
sometimes needs help




Working with type indices

RE :: OccMap -> Type
Rempty :: RE '[]
Rseq :: RE s1 -> RE s2 -> RE (Merge sl s2)
Rstar :: RE s -> RE (Repeat s)

rseq :: RE s1 -> RE s2 -> RE (Merge sl s2)

>
rseq Rempty r2 = r2 -- Merge "[] s2 ~ s2
rseq rl Rempty = ri
rseq rl r2 = Rseq ril1 r2



Working with type indices

Repeat (s :: OccMap) :: OccMap
Repeat '[] '[1]
Repeat ((k,0) : t) (k, Many) : Repeat t

rstar :: RE s -> RE (Repeat s)

rstar Rempty = Rempty -- need: Repeat '[] ~ '[]
rstar (Rstar r) = Rstar r -- ooOps!
rstar r = Rstar r Could not deduce: Repeat s ~ s

from the context: s ~ Repeat sl

Need: Repeat (Repeat sl1l) ~ Repeat sl
Not true by definition. But provable!



Type classes to the rescue

class (Repeat (Repeat s) ~ Repeat s)

=> Wf (s :: OccMap)
instance Wf "[] -- base case
instance (Wf s) => Wf ('(n,0) : s) -- inductive step

rstar :: WFf s => RE s -> RE (Repeat s)
rstar Rempty = Rempty
rstar (Rstar r) = Rstar r

-- have: Repeat (Repeat sl1l) ~ Repeat sl
rstar r = Rstar r



Type classes to the rescue

class (Repeat (Repeat s) ~ Repeat s,

s ~ Alt s s,

Merge s (Repeat s) ~ Repeat s)

=> Wf (s :: OccMap)
instance Wf '[] -- base case
instance (Wf s) => Wf ('(n,0) : s) -- inductive step



| Summary: Dependent types have a lot to offer
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Haskell is a good fit for dependent types

* Similarities make integration possible
* Computation based on polymorphic lambda calculus
* Type system encourages purity

* Differences tell us about the design space

* Full language available for programming, many
examples in-the-wild

* Lack of termination analysis discourages proof-heavy use,
pushes for new approaches
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