
Statistical testing of software

Stevan Andjelkovic

2019.8.21, Summer BOBKonf (Berlin)

Background

I Question: How do we measure the quality of our software?
I Started reading about the two software development processes:

I Cleanroom Software Engineering (Mills et al) and;
I Software Reliability Engineering (Musa et al)

I Today I’d like to share my interpretation of what those two
camps have to say about the above question, and show how
one might go about implementing (the testing part) of their
ideas

Overview

I What are Cleanroom Software Engineering and Software
Reliability Engineering?

I History, in what context where they developed
I Main points of the two methods, focusing on the (statistical)

testing part

I How can we implement their testing ideas using property-based
testing

Harlan Mills (1919-1996)

I PhD in Mathematics, 1952
I Worked at IBM from 1964 to 1987
I Founded Software Engineering Technology, Inc in 1987 (later

acquired by Q-Labs)
I Visiting professor (part-time), 1975-1987
I Adjunct professor, 1987-1995
I Published 6 books and some 50 articles

What is Cleanroom Software Engineering?

I A complete software development process developed by Mills
and many others at IBM

I Goal: Bug prevention, rather than removal (achieve or
approach zero bugs)

I Controversial
I Developers and testers are separate teams
I Relies on formal methods/specifications, stepwise refinement,

and design/code verification/review at each step to prevent
bugs

I Developers have no access to compilers, and are not supposed
to write tests

I Testers job isn’t to find bugs, but to measure the quality
(end-to-end black box tests only)

I Claims to be academic, criticised by Dijkstra

I Many case studies with positive outcomes

John Musa (1933-2009)

I Went to Naval ROTC, became an electrical officer
I Started working at AT&T Bell Labs in 1958
I Started working on SRE in 1973, while managing the work on

an anti-ballistic missile system
I Published first paper A Theory of Software Reliability and Its

Application (Musa 1975)
I Published 3 books and some 100 papers

What is Software Reliability Engineering?

I Also a development process, but not as complete as Cleanroom,
developed by Musa and others at AT&T Bell Labs

I Goal: Estimate the time/cost to deliver software of some given
quality/reliability

I Testing part overlaps greatly with that of Cleanroom Software
Engineering

I SRE became best current practice at AT&T in 1991
I Adopted by many others after positive case studies

Statistical testing and reliability certification

I Statistics in general: used when a population is too large to
study, a statistically correct sample must be drawn as a basis
for inference about the population

I Idea: Test the products of software engineers in the same way
we test the products of other engineers

I Take a random sample of the product, test if it’s correct with
regards to the specification under operational use, make
analytical and statistical inferences about the reliability,
products meeting a standard are certified as fit for use

Statistical testing as a statistical experiment

Figure 1: Picture by Trammell (1995)

Modelling operational use

I Operational use is captured by a usage model (Cleanroom) or
an operational profile (SRE)

I We can define a usage model by asking the questions:
1. Who are the customers and what are their users and their goals?
2. What are the use cases?
3. How often do the use cases happen in relation to each other?

I There are different ways to encode this information, e.g. formal
grammars (property-based testing) or Markov chains

Usage model example, process registry

I What are the users? The developer that uses the process
registry API:

spawn :: IO Pid
register :: Pid -> Name -> IO ()
whereis :: Name -> IO Pid
unregister :: Name -> IO ()
kill :: Pid -> IO ()

I What are the use cases? Calls to the API!
I How often do the use cases happen in relation to each other?

I Spawning, registering, looking up names is the most likely
happy path

I The above with some unregisters and kills interleaved that
happen with less frequently than the lookups seems realistic

I If we want to be precise, we could e.g. study production logs

Formal grammar usage model for process registry

data Action = Spawn | Register Pid Name | Kill ...

gen :: (Int, Int) -> Gen [Action]
gen (spawned, registered) = case (spawned, registered) of

(0, 0) -> liftM (Spawn :) (gen (1, 0))
(1, 0) -> frequency

[(35, liftM (Register (Pid 0) (Name "0") :)
(gen (1, 1)))

, (20, liftM (Kill (Pid 0) :) (gen (0, 0)))
, ...
]

...

Markov chain usage model for process registry

Other uses of the Markov chain usage model

I Markov chains have been very well studied in statistics and
other fields

I Examples of analytic computations we can do without running
any tests:

I Calculate the expected test case length
I Number of test cases required to cover all states/arcs in the

usage model
I Expected proportion of time spent in each state/arc
I Expected number of test cases to first occurrence of each

state/arc
I For more see S. J. Prowell (2000) and the JUMBL tool

I The usage model can also guide development work (Pareto
principle: 20% of use cases support 80% of the system use)

Statistical testing as a statistical experiment

Figure 2: Picture by Trammell (1995)

Bernoulli sampling model for computing reliability

I Reliability = 1 - 1 / MTTF (mean time to failure, where time
could be number of test cases) (See: Poore, Mills, and
Mutchler 1993)

I Number of test cases = log(1 - Confidence) / log(Reliability)
I E.g. To achieve 0.999 reliability with 95% confidence we need

2995 test cases to pass without failure
I Idea: pick desired confidence and reliability, calculate number

of test cases needed, use QuickCheck to generate said many
test cases

I Shortcomings
I Coarse-grained, did the whole test case succeed or not
I Doesn’t take test case length into account
I Doesn’t allow the presence of failures (consider flaky tests)

Arc-based Bayesian model for computing reliability

I More fine-grained, count successful and unsuccessful state
transitions (arcs)

I Compute the overall reliability (and variance) from the above,
and taking the Markov chain probabilities and the probability
mass for each sequence/test case

I More complicated, see Stacy J. Prowell and Poore (2004), and
Xue et al. (2018) for details

I There are other ways to compute the reliability, but this seems
to be the latest one published in the literature that I could find.
It’s also used by the JUMBL tool

A testing Markov chain constructed from test experience

Demo: Computing reliability for process registry example

Statistical testing inspired changes to standard
property-based testing

I Generate programs using a Markov chain usage model
I Persist test results (about state transition reliability)
I Don’t stop in presence of failures
I Compute reliability (and variance) from the usage model and

test experience

Conclusion and further work

I Compare to other ways of measuring quality? Cleanroom
people claim:

I Bugs/kloc: too developer centric
I Code coverage: less cost effective

I Both statistical testing and property-based testing use a
random sample, is there more we can learn from statistical
testing than computing the reliability?

I Can we add combinators to our property-based testing libraries
to make it easier to do statistical testing?

I Can we in a statistically sound way account for flakiness in tests
this way?

I How do we account for incremental development? When testing
version n + 1 of some software, we should be able reuse some
of the test experience from version n

Questions?

Extra slide: Notes from researching Mills and Musa

I Mills’ bibliography
I Musa’s bibliography
I Q-Labs’ collaboration with Software Engeinnering Technology

is documented here, it doesn’t say anything about the
acquisition though.

I Q-Labs later became Addalot Consulting AB
I More about Mills
I Interview with Musa
I Dijkstra’s (harsh) comments on Mills’ work

https://dblp.uni-trier.de/pers/hd/m/Mills:Harlan_D=
https://dblp.uni-trier.de/pers/hd/m/Musa:John_D=
http://www.q-labs.se/historia-18858838
https://www.linkedin.com/company/q-labs-ab
https://www.computer.org/volunteering/awards/mills/about-mills
https://www.researchgate.net/publication/259782514_A_Tribute_to_John_Musa_In_Memoriam
https://duckduckgo.com/lite?q=site:www.cs.utexas.edu/users/EWD%20harlan%20mills

References
Musa, John D. 1975. “A Theory of Software Reliability and Its
Application.” IEEE Trans. Software Eng. 1 (3): 312–27.
doi:10.1109/TSE.1975.6312856.
Poore, Jesse H., Harlan D. Mills, and David Mutchler. 1993.
“Planning and Certifying Software System Reliability.” IEEE Software
10 (1): 88–99. doi:10.1109/52.207234.
Prowell, S. J. 2000. “Computations for Markov Chain Usage
Models.” Software Engineering Institute, Carnegie-Mellon University,
3–505.
Prowell, Stacy J., and Jesse H. Poore. 2004. “Computing System
Reliability Using Markov Chain Usage Models.” Journal of Systems
and Software 73: 219–25. doi:10.1016/S0164-1212(03)00241-3.
Trammell, Carmen. 1995. “Quantifying the Reliability of Software:
Statistical Testing Based on a Usage Model.” In, 208–18.
doi:10.1109/SESS.1995.525966.
Xue, Yufeng, Lan Lin, Xin Sun, and Fengguang Song. 2018. “On A
Simpler and Faster Derivation of Single Use Reliability Mean and
Variance for Model-Based Statistical Testing (S).” In The 30th
International Conference on Software Engineering and Knowledge
Engineering, Hotel Pullman, Redwood City, California, USA, July
1-3, 2018., edited by Óscar Mortágua Pereira, 635–34. KSI
Research Inc.; Knowledge Systems Institute Graduate School.
doi:10.18293/SEKE2018-026.

https://doi.org/10.1109/TSE.1975.6312856
https://doi.org/10.1109/52.207234
https://doi.org/10.1016/S0164-1212(03)00241-3
https://doi.org/10.1109/SESS.1995.525966
https://doi.org/10.18293/SEKE2018-026

