
Franz Thoma 
, Berlin, 2019-08-21

Functional Design PatternsFunctional Design Patterns

Summer BOBKonf 2019

https://bobkonf.de/2019-summer/
http://www.tngtech.com/


Are There Design Patterns in FunctionalAre There Design Patterns in Functional

Programming?Programming?



How do you implement common design patterns likeHow do you implement common design patterns like

Repository, Factory, IoC in Haskell?Repository, Factory, IoC in Haskell?

— Question on Reddit (paraphrased)

https://www.reddit.com/r/haskell/comments/4rismi/article_on_oop_design_pattern_alternatives_in/


How does one design a large scale application withHow does one design a large scale application with

functional programming?functional programming?

— Question on Reddit (paraphrased)

https://www.reddit.com/r/haskell/comments/5r271m/haskell_design_patterns/


Functional programming has fewer “design patterns” andFunctional programming has fewer “design patterns” and

more “libraries”more “libraries”

— One of the answers

https://www.reddit.com/r/haskell/comments/5r271m/haskell_design_patterns/dd3xw49/


Types types types. Everything starts from the types.Types types types. Everything starts from the types.

— Another answer

https://www.reddit.com/r/haskell/comments/5r271m/haskell_design_patterns/dd3ysd3/


The functor design patternThe functor design pattern

— Blog post by Gabriel Gonzalez

http://www.haskellforall.com/2012/09/the-functor-design-pattern.html


How do you mock things in Haskell?How do you mock things in Haskell?

— A colleague.



How do you do Dependency Injection in Haskell?How do you do Dependency Injection in Haskell?

— A colleague.



What Is A Design Pattern, Anyway?What Is A Design Pattern, Anyway?





Wikipedia DefinitionWikipedia Definition

In software engineering, a software design pattern is a general, reusable solution to a
commonly occurring problem within a given context in software design. It is not a finished
design that can be transformed directly into source or machine code. It is a description or
template for how to solve a problem that can be used in many different situations.



Is Is IteratorIterator a design pattern in Java? a design pattern in Java?

It’s listed in GoF…
But it’s a library interface you can implement.

Even comes with syntactic sugar!

interface Iterable<T> { 
    Iterator<T> iterator(); 
} 
 
interface Iterator<T> { 
    T next() ; 
    boolean hasNext() ; 
}

Iterable<Item> iterable = … 
 
for  (Item item: iterable) { 
    … 
}



Working DefinitionWorking Definition

A Design Pattern is a reusable solution for a recurring problem that can be given in terms of
an easy-to-follow recipe, but not as a reusable piece of code.



GoFGoF

If we assumed procedural languages, we might have included design patterns called
“Inheritance,” “Encapsulation,” and “Polymorphism.” Similarly, some of our patterns are
supported directly by the less common object-oriented languages. CLOS has multi-methods,
for example, which lessen the need for a pattern such as Visitor (page 366).



The The MonadMonad design pattern in Java… design pattern in Java…

It’s a pattern!

class Optional<T> { 
    public  <R> Optional<R> flatMap(Function<T, Optional<R>> f) { … } 
} 
 
class Future<T> { 
    public  <R> Future<R> flatMap(Function<T, Future<R>> f) { … } 
}



…and in Haskell…and in Haskell

It’s a (standard) library interface, not a pattern!

instance Monad Maybe where  … 
instance Monad Future where  …



OOP design patterns that do not work in functionalOOP design patterns that do not work in functional

programmingprogramming

OOP FP

Strategy Pattern Higher-Order Functions

Visitor Pattern Pattern Matching

Singleton Pattern Top-Level Constant



OOP concepts that can be emulated as a pattern inOOP concepts that can be emulated as a pattern in

functional programmingfunctional programming

OOP FP

Classes/Instances Service Pattern

Subtyping N.N. (See e.g.   package: class Is a b where …)optics

https://github.com/well-typed/optics/blob/master/optics-core/src/Optics/Internal/Optic/Subtyping.hs


Some Functional Design PatternsSome Functional Design Patterns



The The Config MonoidConfig Monoid Pattern (aka  Pattern (aka Partial Options MonoidPartial Options Monoid))

Merging config options from multiple sources with a given precedenceMerging config options from multiple sources with a given precedence



The The Config MonoidConfig Monoid Pattern (aka  Pattern (aka Partial Options MonoidPartial Options Monoid))

data Options = Options  
    { verbose �� Bool  
    , cacheTimeout �� Maybe  Long  } 
 
data PartialOptions = PartialOptions  
    { pVerbose �� Last  Bool  
    , pCacheTimeout �� Last  Long  } 
    deriving  (Monoid )

buildOptions �� PartialOptions �> Validation String  Options  
buildOptions PartialOptions {..} = Options  
    <$> maybe (Failure  ["No verbosity given"]) Success  (getLast pVerbose) 
    <�> getLast pCacheTimeout



The The Config MonoidConfig Monoid Pattern (aka  Pattern (aka Partial Options MonoidPartial Options Monoid))

Sources:
https://medium.com/@jonathangfischoff/the-partial-options-monoid-pattern-31914a71fc67

loadOptions �� FilePath  �> IO  Options  
loadOptions configFile = do  
    configFileOptions <� parseConfigFile configFile 
    cmdLineOptions <� parseCmdLineOptions 
    case  buildOptions (defaultOptions <> configFileOptions <> cmdLineOptions) of  
        Success  opts �> pure opts 
        Failure  errs �> error ("Configuration errors: " �� intercalate ", "  errs)



The The Transformer StackTransformer Stack Pattern Pattern

Managing and combining monadic side effectsManaging and combining monadic side effects



The The Transformer StackTransformer Stack Pattern Pattern

newtype AppT s m a = AppT (StateT s (ReaderT Config m) a)  
    deriving  (Functor , Applicative, Monad ) 
 

instance MonadTrans (AppT s) where 
    lift = AppT  . lift . lift 
 
runAppT  �� AppT  s m a �> s �> Config  �> m (a, s) 
runAppT  (AppT  action) initialState config = runStateT (runReaderT action config) 
initialState 
 
type App s a = AppT s Identity a  
 
runApp  �� App  s a �> s �> Config  �> (a, s) 
runApp  action initialState config = runIdentity (runAppT action initialState config)

config  �� AppT  s m Config  
config  = AppT  (lift ask) 
 
appState  �� AppT  s m s 
appState  = AppT  get



The The Transformer StackTransformer Stack Pattern Pattern

handleEvent �� Event  �> App  AppState  () 
 
renderApp �� AppT  AppState  IO  () 
 
renderButton �� AppT  ButtonState IO  ()



The The ServiceService Pattern Pattern

Exchangable implementations of componentsExchangable implementations of components

Inversion of Control by emulating OOP interfaces/objects with methods.



The The ServiceService Pattern Pattern

-- The service »interface« 
data Logger = Logger { log �� Level �> String �> IO () }  
 
-- The »implementations«  
withFileLogger �� FilePath  �> Level  �> (Logger  �> IO  a) �> IO  a 
withFileLogger logFile threshold action = do  
    handle <� openFile logFile AppendMode 
    action Logger  { log = \level msg �> guard (level >= threshold) (hPutStrLn handle msg) } 
    hclose handle 
 
withConsoleLogger �� Level  �> (Logger  �> IO  a) �> IO  a 
withConsoleLogger threshold action = 
    action Logger  { log = \level msg �> guard (level >= threshold) (putStrLn msg) } 
 
withNoOpLogger �� (Logger  �> IO  a) �> IO  a 
withNoOpLogger action = action Logger  { log = \_ _ �> pure () } 
 
-- Convenience  
logError , logWarn, logInfo, logDebug �� MonadReader Logger  m �> String  �> m () 
logError  msg = ask >�� \logger �> log logger Error  msg 
logWarn   msg = ask >�� \logger �> log logger Warn   msg 
logInfo   msg = ask >�� \logger �> log logger Info   msg 
logDebug  msg = ask >�� \logger �> log logger Debug  msg



The The ServiceService Pattern Pattern

launchWithCountdown �� (MonadIO  m, MonadReader Logger  m) �> m () 
launchWithCountdown = do  
    logInfo "3"  
    logInfo "2"  
    logInfo "1"  
    liftIO launchMissiles 
    logInfo "Missiles launched."

-- A »mock implementation« … 
withCollectingLogger �� (Logger  �> IO  a) �> IO  (a, [(Level , String )]) 
withCollectingLogger action = do  
    messagesRef <� newIORef [] 
    result <� action Logger  { log = \level msg �> modifyIORef' ((level, msg)�) messagesRef } 
    messages <� readIORef messagesRef 
    pure (result, messages) 
 
-- … can be used for testing 
withCollectingLogger launchWithCountdown



The The ServiceService Pattern Pattern

Sources:
https://www.schoolofhaskell.com/user/meiersi/the-service-pattern

https://jaspervdj.be/posts/2018-03-08-handle-pattern.html

-- »dependency injection« 
main  = runManaged $ do  
    logger <� managed (withConsoleLogger Info ) 
    database <� managed (withMySqlDatabase logger) -- inject Logger service into Database service 
    …



Thank you!Thank you!



Questions?Questions?



Thank you!Thank you!

Slides on Github: 
 on Github
 on keybase.io

github.com/fmthoma/functional-design-patterns-slides
fmthoma
fmthoma
franz.thoma@tngtech.com

https://github.com/fmthoma/functional-design-patterns-slides
https://github.com/fmthoma
https://keybase.io/fmthoma
mailto://franz.thoma@tngtech.com

