-unctional Design Patterns

Franz Thoma
Summer BOBKonf 2019, Berlin, 2019-08-21

TN G TECHNOLOGY
CONSULTING

https://bobkonf.de/2019-summer/
http://www.tngtech.com/

Are There Design Patterns in Functional
Programming?

How do you implement common design patterns like
Repository, Factory, [oC in Haskell?

— Question on Reddit (paraphrased)

19 Article on OOP design pattern alternatives in Haskell

wondering if there are some more coherent articles that discuss some common design patterns like repository,
factory, IoC, etc... but from Haskell perspective?

https://www.reddit.com/r/haskell/comments/4rismi/article_on_oop_design_pattern_alternatives_in/

How does one design a large scale application with
functional programming?

— Question on Reddit (paraphrased)

4 Posted by

:" Haskell Design Patterns?
I come from OOP and as I learn Haskell what I find particularly hard is to understand the design strategy that one uses in
functional programming to create a large application. In OOP one has to identify those elements of the application that
make sense to be represented as objects, their relationships, their behaviour and then create classes to express them and
encapsulate their data and operations (methods). For example, when one wants to write an application which deals with
geometrical entities he can represent them in classes like Triangle, Tetrahedron etc and handle them through some base
class like Shape in a generic manner. How does one design a large scale application (not simple examples) with functional
programming?

I think that this kind of knowledge and examples are very important for any programming language to become popular
and although one can find a lot of material for OOP there is a profound lack of such information and design tutorials for
functional programming except for syntax and abstract mathematical ideas when a developer needs more practical
information and design patterns to learn and adapt to his needs.

B 63 Comments % Share JJ Save () Hide [Report

https://www.reddit.com/r/haskell/comments/5r271m/haskell_design_patterns/

Functional programming has fewer “design patterns” and
more “libraries”

— One of the answers

+

¥ Functional programming has fewer "design patterns" and more "libraries" - we're a bit better about abstracting out the
repetitive patterns in approaches to problems. That's not to say that we don't have our own design patterns (which
might someday influence the design of future languages such that we can eliminate them), but it's harder to recognise
them in general at the moment.

Here is a talk I highly recommend, given by Simon Peyton Jones, discussing one of the major approaches to functional
programming which I would consider a "design pattern” of sorts -- embedded domain-specific languages.

At present, it's hard to imagine taking the entirety of that approach and turning it into a reusable library to kill the
pattern entirely, though there is no shortage of libraries which can help with various aspects of it.

https://www.reddit.com/r/haskell/comments/5r271m/haskell_design_patterns/dd3xw49/

Types types types. bverything starts from the types.

— Another answer

+
¥ Types types types. Everything starts from the types. Figure out what data types your application needs. Then figure out

what operations you need to do on those types. Try to make them pure functions as much as possible. This is where it
all starts. It's very similar to OO classes actually, minus the inheritance.

There are plenty of other things to talk about. But that would take a lot longer, and this is really the core to it all. This
talk by Conal Elliott does a great job at showing this in action:

https.//www.youtube.com/watch?v=bmKYiUOE02A

https://www.reddit.com/r/haskell/comments/5r271m/haskell_design_patterns/dd3ysd3/

The functor design pattern

— Blog post by Gabriel Gonzalez

The functor design pattern

This post builds on my previous post on the category design pattern and this time | will discuss the functor
design pattern. If you are an intermediate Haskell programmer and you think you already understand
functors, then think again, because | promise you this post will turn most of your preconceptions about
functors on their head and show you how functors are much more powerful and generally applicable than
you might realize.

http://www.haskellforall.com/2012/09/the-functor-design-pattern.html

How do you mock things in Haskell?

— A colleague.

How do you do Dependency Injection in Haskell?

— A colleague.

What Is A Design Pattern, Anyway?

Design Patterns

Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

Cionver art 0 1994 M.C. Escher | Cosdhon Art - Baam - Holland, All rights resenaed

>

X
O
)
(¥ o]
®)
z
=
<
rm
LN
s
—
=t
d
A
fam
!
|
rm
¥
=0
®
Z
P
—
r-‘:l
@)
=
—
e
=
—|
L
'
(7]
-
&
rmi
m

Wikipedia Definition

In software engineering, a software design pattern is a general, reusable solution to a
commonly occurring problem within a given context in software design. It is not a finished
design that can be transformed directly into source or machine code. It is a description or
template for how to solve a problem that can be used in many different situations.

s Iterator a design pattern in Java?’

» |t's listed in GoF...
» Butit’s alibrary interface you can implement.

interface Iterable<T> {
Iterator<T> iterator();
}

interface Iterator<T> {
T next() ;
boolean hasNext() ;

}

» Even comes with syntactic sugar!

Iterable<Item> iterable = ..

for (Item item: iterable) {
}

Working Definition

A Design Pattern is a reusable solution for a recurring problem that can be given in terms of
an easy-to-follow recipe, but not as a reusable piece of code.

GoF

If we assumed procedural languages, we might have included design patterns called
“Inheritance,” “Encapsulation,” and “Polymorphism.” Similarly, some of our patterns are
supported directly by the less common object-oriented languages. CLOS has multi-methods,
for example, which lessen the need for a pattern such as Visitor (page 366).

The Monad design pattern in Java...

class Optional<T> {
public <R> Optional<R> flatMap(Function<T, Optional<R>> f) { .. }
}
class Future<T> {
public <R> Future<R> flatMap(Function<T, Future<R>> f) { .. }
}

It's a pattern!

...and in Haskell

instance Monad Maybe where
instance Monad Future where

It’s a (standard) library interface, not a pattern!

OOP design patterns that do not work in functional
programming

OOP FP

Strategy Pattern Higher-Order Functions
Visitor Pattern Pattern Matching

Singleton Pattern Top-Level Constant

OOP concepts that can be emulated as a pattern in
functional programming

OOP FP

Classes/Instances Service Pattern

Subtyping N.N. (See e.g. optics package:class Is a b where ..)

https://github.com/well-typed/optics/blob/master/optics-core/src/Optics/Internal/Optic/Subtyping.hs

Some Functional Design Patterns

The Config Monoid Pattern (aka Partial Options Monoid)

Merging config options from multiple sources with a given precedence

The Config Monoid Pattern (aka Partial Options Monoid)

data Options = Options
{ verbose :: Bool
, cacheTimeout :: Maybe Long }

data PartialOptions = PartialOptions
{ pVerbose :: Last Bool
, pCacheTimeout :: Last Long }
deriving (Monoid)

buildOptions :: PartialOptions —> Validation String Options

buildOptions PartialOptions {..} = Options
<$> maybe (Failure ["No verbosity given"]) Success (getLast pVerbose)
<*> getlast pCacheTimeout

The Config Monoid Pattern (aka Partial Options Monoid)

loadOptions :: FilePath — IO Options
loadOptions configFile = do
configFileOptions < parseConfigFile configFile
cmdLineOptions < parseCmdLineOptions

case buildOptions (defaultOptions <> configFileOptions <> cmdLineOptions) of
Success opts —> pure opts
Failure errs = error ("Configuration errors: " + intercalate ", " errs)
Sources:

» https://medium.com/@jonathangfischoff/the-partial-options-monoid-pattern-31914a71fcé67

The [ransformer Stack Pattern

Managing and combining monadic side effects

The Transformer Stack Pattern

newtype AppT s m a = AppT (StateT s (ReaderT Config m) a)
deriving (Functor , Applicative, Monad)

instance MonadTrans (AppT s) where

lift = AppT O lift . lift
runAppT :: AppT sma—>s = Config —=m(a, s)
runAppT (AppT action) initialState config = runStateT (runReaderT action config)
initialState

type App s a = AppT s Identity a

runApp .2 App sa—>s —> Config — (a, s)
runApp action initialState config = runldentity (runAppT action initialState config)

config ;1 AppT s m Config
config = AppT (1ift ask)
appState :: AppT s ms

appState = AppT get

The Transformer Stack Pattern

handleEvent :: Event - App AppState ()

renderApp :: AppT AppState IO O

renderButton :: AppT ButtonState I0 O

The Service Pattern

Exchangable implementations of components

Inversion of Control by emulating OOP interfaces/objects with methods.

The Service Pattern

data Logger = Logger { log :: Level —> String = 10 () }

withFileLogger :: FilePath — Level —> (Logger - 10 a) > 10 a
withFileLogger logFile threshold action = do
handle < openFile logFile AppendMode

action Logger { log = \level msg —> guard (level >= threshold) (hPutStrLn handle msg) }
hclose handle

withConsolelLogger :: Level —> (Logger — 10 a) = 10 a
withConsolelLogger threshold action =
action Logger { log = \level msg —> guard (level >= threshold) (putStrLn msg) }

withNoOpLogger :: (Logger — 10 a) = I0 a
withNoOpLogger action = action Logger { log = _- - = pure () }

logError , logWarn, loglnfo, logDebug :: MonadReader Logger m = String =>mn ()

logError msg = ask >= \logger — log logger Error msg
logWarn msg = ask >= \logger —> log logger Warn msg
loglnfo msg = ask >= \logger — log logger Info msg

logDebug msg = ask >= \logger — log logger Debug msg

The Service Pattern

launchWithCountdown :: (MonadI0O m, MonadReader Logger m) = m ()
launchWithCountdown = do

logInfo "3"
logInfo "2"
logInfo "1"

LiftI0 launchMissiles
logInfo "Missiles launched."

withCollectinglLogger :: (Logger @ — IO a) => 10 (a, [(Level , String)])
withCollectinglLogger action = do
messagesRef < newIORef []
result < action Logger { log = \level msg —> modifyIORef' ((level, msg):) messagesRef }
messages < readlORef messagesRef
pure (result, messages)

withCollectinglLogger launchWithCountdown

The Service Pattern

main = runManaged $ do
logger < managed (withConsolelLogger Info)
database < managed (withMySqlDatabase logger)

Sources:
» https://www.schoolofhaskell.com/user/meiersi/the-service-pattern
» https://jaspervdj.be/posts/2018-03-08-handle-pattern.html

Thank youl

Questions?

Thank youl

Slides on Github: github.com/fmthoma/functional-design-patterns-slides
fmthoma on Github

fmthoma on keybase.io

franz.thoma@tngtech.com

https://github.com/fmthoma/functional-design-patterns-slides
https://github.com/fmthoma
https://keybase.io/fmthoma
mailto://franz.thoma@tngtech.com

