1530

In search of software perfection

Xavier Leroy
2019-08-21

College de France and Inria

A formative experience (Jan 1988)

— Your 100 000 lines of code embedded in Ariane 4...
Are you sure there are no bugs?

— Sir! We tested them very carefully!

Second formative experience (Spring 1988)

— I'm looking for a summer internship in systems programming
or maybe in compilation.

— Well, I know a language that could use more compilation work.
It's called CAML.

Program proof

Verification of high-assurance software

Mostly code reviews and lots of tests.

Limitations:

 Incomplete: cannot explore all possible behaviors of the

program.
Testing shows the presence, not the absence of bugs.

E. W. Dijkstra, 1969

- Expensive: writing and validating the test suite against the
specifications is hugely expensive at the highest assurance
levels.

Formal verification

Using computation and deduction, establish properties that hold
of all possible executions of the program.

Properties range from robustness (no crashes) to full correctness
(w.rt. specifications).

An old idea

Alan Turing, Checking a large routine, 1949.

Sriday, 24Lth June, .
Checking & large routine. by Dr, A, Turing.
How can one check a routine in the sense of making sure that it is right?
In order that the man wiw checks may not have too dirficult a task the

programaer should make a number of definite assertions which can be checked

individually, and fras which the correctncss of the whole programse easily
rfollows,

Talk given at the inaugural conference of the EDSAC computer, Cambridge University, June
1949. The manuscript was corrected, commented, and republished by F.L. Morris and C.B.

Jones in Annals of the History of Computing, 6, 1984.

Turing's “large routine”

Compute n! using additions only.

Two nested loops.

int fac (int n)
{
int s, r, u, v;
u-=1;
for (r = 1; r < n; r++) {
v=mu; s =1;
u=u+v;
} while (s++ < 1);
}

return u;

Turing's “large routine”

No structured programming in 1949; just flowcharts.

Figure 1 (Redrawn from Turing’s original)

Every program point is associated with a logical invariant: a
relation between values of variables that hold in every execution.

STORAGE (NITIAL) (35*’) ® ® ©
LOCATION i=e k=5 k=4 k=0 k=3 k=1 k=2
27 s s+1 s
28 r r r r r
29 n n n n n n n
30 \r lr sir (s +Nlr (s+ Ml

31 r n Ir tr lr
T0 ® 70 ©|T0 ® 10 ©| 10 ® 10 ®
WITHr' =1 IFr=n WITHr =r+1
u =1 TO ® IFs=r
IFr<m TO
WITHS =s +1
IFs<r

Figure 2 (Redrawn from Turing’s original)

In more modern notation:

s=sr<n
u=(s+ 1
v=rl

3

STOP

<

I

2
<C N
—==1 I IA

s

o
-—=A
3

n
et

S~

- i
1L—r+1 7 U= érl
' v=rl
r<n
u=(r+1r!

To verify the program, it's enough to check that each assertion

logically implies the assertions at successor points.
10

The next 60 years

1967 R. Floyd, Assigning meanings to programs.
Reinvents and generalizes Turing's idea.

1969 C. A. R. Hoare, An axiomatic basis for computer
programming. A logic {P} ¢ {Q} to reason about
structured programs.

1970-2000 General conviction: not usable in practice.

1976-1980 Restricted, more automatic approaches:
abstract interpretation, model checking.

circa 2000 Much progress in automated theorem proving (SMT).

mid 2000 Practically-usable tools for program proof.

n

Frama-C WP demo

Programming with a proof assistant

Propositions as Types, Proofs as Programs

Curry (1958) observes and Howard (1969) studies in more details a
beautiful correspondence between a calculus and a logic:

simply-typed A-calculus | intuitionistic logic

type proposition
term (program) proof (“construction”)

reduction (execution) | cut elimination (normalization)

12

Unified frameworks for computation and proof

Generalizing the Curry-Howard correspondence:

+ Martin-Lof type theory (1972-1980) (~ Agda)

+ Coquand and Huet's Calculus of Constructions (1985)
(~ Coq, Lean)

Based on lambda-calculus + dependent types (1, X) +
stratification in universes.

Provide highly expressive frameworks for computation and
proofs.

13

Another approach to program proof

If we write programs in such a dependently-typed
lambda-calculus, we will be able to reason about programs
directly inside the logic.

No program logic is needed to mediate between programs and
logical propositions if the functions and the data structures of
the program are functions and objects of the mathematical logic
already!

14

Contrasting the two approaches

Frama-C style: distinguish between computational functions
(strlen) and logical functions (Length), often axiomatized.

/*@ logic integer length(const char * s);
Q@ axiom length_O:
V s; valid_string(s) ==> s[length[s]] == 0;
Q@ axiom length_1:
V s, i; valid_string(s) /\ 0 <= i < length[s] ==> s[i] != 0;
ox/

Computational functions are specified using logical functions.

/*@ requires valid_string(s);

@ ensures \result == length[s];
ox/
size_t strlen(const char * s) { ... }

15

Contrasting the two approaches

Cog-style: the same functions can be used in computations and
in theorems.

Fixpoint length(l: list A) : nat :=
match 1 with nil => 0 | h :: t => S (length 1) end.

Definition combine(1l1l 12: list A) : option (list A) :=
if length 11 =7 length 12 then Some (zip 11 12) else None.

Theorem length_map:
forall f 1, length (map f 1) = length 1.

16

A requirement: hyperpure functional programming

When programming in a proof assistant, we must program in
“hyperpure” functional style:

« No imperative features
(= persistent data structures, monads, etc)

« All functions must provably terminate.

(Haskell is not hyperpure; F* is because nontermination is a
monadic effect.)

17

Coq demo

Is software perfection within reach?

Is software perfection within reach?

Program proof and mechanized logics are a huge step forward.

They reduce the problem of trusting the program to that of
trusting its formal specifications.

- Formal specifications must be available.
(Control-command applications: OK; Web applications: 2??)

- Formal specifications should be as clear and simple as
possible.

- Formal specifications must be reviewed and tested.
(Executable specs a plus.)

18

Two examples from deep neural networks

Image classification ACAS-Xu collision avoidance

\ e,
» Ow nship .,

9 ---

No specification Geometric specification
Formal verification: G. Katz et al, 2017

19

Some other limitations

Hardware is not as perfect as we software people like to assume.
(Skylake HT bug, Rowhammer, Meltdown, Spectre, ...)

Specification languages are in their infancy.
(Domain-specific specification languages?)

We teach logic badly in maths and CS courses.

20

Try and prove your programs.

They will thank you for that.

21

	Program proof
	Frama-C WP demo
	Programming with a proof assistant
	Coq demo
	Is software perfection within reach?

