
In search of so�ware perfection

Xavier Leroy
2019-08-21

Collège de France and Inria

1

A formative experience (Jan 1988)

— Your 100 000 lines of code embedded in Ariane 4. . .
Are you sure there are no bugs?

— Sir! We tested them very carefully!

2

Second formative experience (Spring 1988)

— I’m looking for a summer internship in systems programming
or maybe in compilation.

— Well, I know a language that could use more compilation work.
It’s called CAML.

3

Program proof

Verification of high-assurance so�ware

Mostly code reviews and lots of tests.

Limitations:

• Incomplete: cannot explore all possible behaviors of the
program.
Testing shows the presence, not the absence of bugs.

E. W. Dijkstra, 1969

• Expensive: writing and validating the test suite against the
specifications is hugely expensive at the highest assurance
levels.

4

Formal verification

Using computation and deduction, establish properties that hold
of all possible executions of the program.

Properties range from robustness (no crashes) to full correctness
(w.r.t. specifications).

5

An old idea

Alan Turing, Checking a large routine, 1949.

Talk given at the inaugural conference of the EDSAC computer, Cambridge University, June

1949. The manuscript was corrected, commented, and republished by F.L. Morris and C.B.

Jones in Annals of the History of Computing, 6, 1984.

6

Turing’s “large routine”

Compute n! using additions only.

Two nested loops.

int fac (int n)

{

int s, r, u, v;

u = 1;

for (r = 1; r < n; r++) {

v = u; s = 1;

do {

u = u + v;

} while (s++ < r);

}

return u;

}

7

Turing’s “large routine”

No structured programming in 1949; just flowcharts.F. L. Morris & C. B. Jones * Turing Proof

0 D

I---+
STOP

0 A

0 E 0 G
-

, r’=l \ v’=u
u’ = 1

I +-- TESTr-n + s’=l : :- l/‘=u+v : s’=s+l

\,
/. A

0 F
-

+ TESTS-r I .p r’=r+l-\
,

I

Figure 1 (Redrawn from Turing’s original)

Conference Discussion (from page 70 of the conference
report)

Prof. Hartree said that he thought that Dr Turing had
used the terms “induction” and “inductive variable” in a
misleading sense since to most mathematicians induction
would suggest “mathematical induction” whereas the pro-
cess so called by von Neumann and Turing often consisted
of repetition without logical connection. Prof. Newman sug-
gested that the term “recursive variable” should be used. Dr
Turing, however, still thought that his original terminology
could be justified.

Comments

The contributors to the conference discussion were
M. H. A. Newman, then professor of pure mathematics

STORAGE (INITIAL) (STOP)

LOCATION @ @O@O
k=6 k=5 k=4 k=O k=3

0 0
k=l k=2

I 27 I S s+l S
r r r r
n n n

Sk (s Jl)Lr (s :1,Lf

28
::

31

r
n n

1L

TO @
WITH r’ = 1

TO @

u’ = 1

L’
II

TO @
IFr=n
TO @
IFr-cn

v WITHY = r + 1
IFsrr
TO @
WlTHs’=s+l .-

at Manchester University, who had played a leading
part in setting up the Manchester computer project,
and D. R. Hartree, then professor of mathematical
physics at Cambridge University, who had been a
moving force both at the NPL and at Cambridge.

We now turn to a discussion of Turing’s proof
method. Present methods might combine Turing’s
Figures 1 and 2 into a flowchart that includes the
assertions. Figure A is an annotated flowchart in the
style of Floyd (1967). Two significant differences be-
tween Figure A and Turing’s presentation may be
observed.

1. In the Floyd style, assertions may be any propo-
sitions relating the values of the variables to each

Figure 2 (Redrawn from Turing’s original)

Annals of the History of Computing, Volume 6, Number 2, April 1984 l 141

8

Turing’s genius idea

Every program point is associated with a logical invariant: a
relation between values of variables that hold in every execution.

F. L. Morris & C. B. Jones * Turing Proof

0 D

I---+
STOP

0 A

0 E 0 G
-

, r’=l \ v’=u
u’ = 1

I +-- TESTr-n + s’=l : :- l/‘=u+v : s’=s+l

\,
/. A

0 F
-

+ TESTS-r I .p r’=r+l-\
,

I

Figure 1 (Redrawn from Turing’s original)

Conference Discussion (from page 70 of the conference
report)

Prof. Hartree said that he thought that Dr Turing had
used the terms “induction” and “inductive variable” in a
misleading sense since to most mathematicians induction
would suggest “mathematical induction” whereas the pro-
cess so called by von Neumann and Turing often consisted
of repetition without logical connection. Prof. Newman sug-
gested that the term “recursive variable” should be used. Dr
Turing, however, still thought that his original terminology
could be justified.

Comments

The contributors to the conference discussion were
M. H. A. Newman, then professor of pure mathematics

STORAGE (INITIAL) (STOP)

LOCATION @ @O@O
k=6 k=5 k=4 k=O k=3

0 0
k=l k=2

I 27 I S s+l S
r r r r
n n n

Sk (s Jl)Lr (s :1,Lf

28
::

31

r
n n

1L

TO @
WITH r’ = 1

TO @

u’ = 1

L’
II

TO @
IFr=n
TO @
IFr-cn

v WITHY = r + 1
IFsrr
TO @
WlTHs’=s+l .-

at Manchester University, who had played a leading
part in setting up the Manchester computer project,
and D. R. Hartree, then professor of mathematical
physics at Cambridge University, who had been a
moving force both at the NPL and at Cambridge.

We now turn to a discussion of Turing’s proof
method. Present methods might combine Turing’s
Figures 1 and 2 into a flowchart that includes the
assertions. Figure A is an annotated flowchart in the
style of Floyd (1967). Two significant differences be-
tween Figure A and Turing’s presentation may be
observed.

1. In the Floyd style, assertions may be any propo-
sitions relating the values of the variables to each

Figure 2 (Redrawn from Turing’s original)

Annals of the History of Computing, Volume 6, Number 2, April 1984 l 141

9

Turing’s genius idea

In more modern notation:

F. L. Morris & C. B. Jones * Turing Proof F. L. Morris & C. B. Jones * Turing Proof

O<n O<n
I I

v = n! v = n!
I I
I I
I

r5n r5n 15 rcn ‘STOP scr<n slr<n
u = r! u = r! ll= ll = r! u = sr!

I 20 u=(s-tl)r!
I v = r! v = f! v = r!
I I I A I I I I- I

’ s:=s+l

I
I
I

r-en
u=(r+l)r!

u = sr!
v = r!

Figure A

other, whereas the format of Figure 2 tends to restrict remarks in Figure 2, the test at F is meant to compare
one to giving an explicit expression for the value of r with the unincremented value of s. Just how this
each variable of interest. Thus it is possible to express, test is to be implemented, s being no longer the con-
for example, the inequality r I n, which strictly speak- tents of any location, is presumably left to the coder’s
ing is necessary for inferring the u = n! claim at D ingenuity.
from u = r! (holding at C) and r 2 n (shown by arrival Turing’s convention here-that the increase of s
at D from C). (Note, that Turing speaks of giving, in need not coincide with execution of the box “s’ = s +’
the upper part of Figure 2, “restrictions on the quan- 1”-cannot be regarded as happily chosen; indeed, the
tities s, r”; these do not appear, however.) notation of Figure 1 must probably be considered as

2. In Figure 1 the contents of the individual boxes potentially ambiguous standing on its own, because
(e.g., “r’ = r + 1”) are best regarded as specifications there seems to be no clear rule about when the addition
to be met by coding: “achieve that r on exit is one of a prime to a letter makes a difference. We conjec-
more than r on entry.” The corresponding assignment ture, however, that the flow diagram (Figure 1) was
statement in Figure A (“r := r + 1”) is to be thought drawn just for the occasion, because “there is no
of as a directly executable statement; the level of coding system sufficiently generally known,” and that
necessary representation of quantities and implemen- what Turing had in mind to be passed between the
tation of operations lying below the atomic statements programmer and the checker was the actual code of a
of Figure A is entirely ignored. In particular, the Floyd routine, marked with letters A, B, . . . , together with
notation makes no use of primed variables; every use an equivalent of Figure 2. There would then be no
of a variable in an expression, whether in a box or in appearance of inconsistency between the code corre-
an assertion, is to be understood as referring to the sponding to box G, incrementing the contents of lo-
current value. cation 27, and the behavior of the variable s, belonging

The most striking discrepancy between the two solely to the assertions, which increased-as might
versions of the flowchart arises form this last point. seem more natural to the programmer-at the point
Turing chooses to regard the box at G (“s ’ = s + 1”) of closure of the loop it controlled.
as having no effect on the values of his variables, but An additional, minor, remark on the proof concerns
instead as causing location 27 to contain s + 1 in place the intended domain of the program. It would appear
of s, an outcome that in Floyd’s notation one would to compute factorial zero correctly, but the assertions
have no means of expressing. As is clear from the are not framed so as to prove this. The necessary

142 l Annals of the History of Computing, Volume 6, Number 2, April 1984

To verify the program, it’s enough to check that each assertion
logically implies the assertions at successor points.

10

The next 60 years

1967 R. Floyd, Assigning meanings to programs.
Reinvents and generalizes Turing’s idea.

1969 C. A. R. Hoare, An axiomatic basis for computer
programming. A logic {P} c {Q} to reason about
structured programs.

1970–2000 General conviction: not usable in practice.
1976–1980 Restricted, more automatic approaches:

abstract interpretation, model checking.
circa 2000 Much progress in automated theorem proving (SMT).
mid 2000 Practically-usable tools for program proof.

11

Frama-C WP demo

Programming with a proof assistant

Propositions as Types, Proofs as Programs

Curry (1958) observes and Howard (1969) studies in more details a
beautiful correspondence between a calculus and a logic:

simply-typed λ-calculus intuitionistic logic

type proposition

term (program) proof (“construction”)

reduction (execution) cut elimination (normalization)

12

Unified frameworks for computation and proof

Generalizing the Curry-Howard correspondence:

• Martin-Löf type theory (1972–1980) (Agda)
• Coquand and Huet’s Calculus of Constructions (1985)

(Coq, Lean)

Based on lambda-calculus + dependent types (Π, Σ) +
stratification in universes.

Provide highly expressive frameworks for computation and
proofs.

13

Another approach to program proof

If we write programs in such a dependently-typed
lambda-calculus, we will be able to reason about programs
directly inside the logic.

No program logic is needed to mediate between programs and
logical propositions if the functions and the data structures of
the program are functions and objects of the mathematical logic
already!

14

Contrasting the two approaches

Frama-C style: distinguish between computational functions
(strlen) and logical functions (length), o�en axiomatized.

/*@ logic integer length(const char * s);

@ axiom length_0:

∀ s; valid_string(s) ==> s[length[s]] == 0;

@ axiom length_1:

∀ s, i; valid_string(s) /\ 0 <= i < length[s] ==> s[i] != 0;

@*/

Computational functions are specified using logical functions.

/*@ requires valid_string(s);

@ ensures \result == length[s];

@*/

size_t strlen(const char * s) { ... }

15

Contrasting the two approaches

Coq-style: the same functions can be used in computations and
in theorems.

Fixpoint length(l: list A) : nat :=

match l with nil => O | h :: t => S (length l) end.

Definition combine(l1 l2: list A) : option (list A) :=

if length l1 =? length l2 then Some (zip l1 l2) else None.

Theorem length_map:

forall f l, length (map f l) = length l.

16

A requirement: hyperpure functional programming

When programming in a proof assistant, we must program in
“hyperpure” functional style:

• No imperative features
(⇒ persistent data structures, monads, etc)

• All functions must provably terminate.

(Haskell is not hyperpure; F* is because nontermination is a
monadic e�ect.)

17

Coq demo

Is so�ware perfection within reach?

Is so�ware perfection within reach?

Program proof and mechanized logics are a huge step forward.

They reduce the problem of trusting the program to that of
trusting its formal specifications.

• Formal specifications must be available.
(Control-command applications: OK; Web applications: ???)

• Formal specifications should be as clear and simple as
possible.

• Formal specifications must be reviewed and tested.
(Executable specs a plus.)

18

Two examples from deep neural networks

Image classification ACAS-Xu collision avoidance

A DNN implementation of ACAS Xu presents new certification challenges.
Proving that a set of inputs cannot produce an erroneous alert is paramount
for certifying the system for use in safety-critical settings. Previous certification
methodologies included exhaustively testing the system in 1.5 million simulated
encounters [20], but this is insu�cient for proving that faulty behaviors do not
exist within the continuous DNNs. This highlights the need for verifying DNNs
and makes the ACAS Xu DNNs prime candidates on which to apply Reluplex.

Network Functionality. The ACAS Xu system maps input variables to action
advisories. Each advisory is assigned a score, with the lowest score corresponding
to the best action. The input state is composed of seven dimensions (shown in
Fig. 6) which represent information determined from sensor measurements [19]:
(i) ⇢: Distance from ownship to intruder; (ii) ✓: Angle to intruder relative to
ownship heading direction; (iii) : Heading angle of intruder relative to ownship
heading direction; (iv) vown: Speed of ownship; (v) vint: Speed of intruder; (vi) ⌧ :
Time until loss of vertical separation; and (vii) aprev: Previous advisory. There
are five outputs which represent the di↵erent horizontal advisories that can be
given to the ownship: Clear-of-Conflict (COC), weak right, strong right, weak
left, or strong left. Weak and strong mean heading rates of 1.5 �/s and 3.0 �/s,
respectively.

Ownship

vown

Intruder

vint

⇢

✓

Fig. 6: Geometry for ACAS Xu Horizontal Logic Table

The array of 45 DNNs was produced by discretizing ⌧ and aprev, and produc-
ing a network for each discretized combination. Each of these networks thus has
five inputs (one for each of the other dimensions) and five outputs. The DNNs
are fully connected, use ReLU activation functions, and have 6 hidden layers
with a total of 300 ReLU nodes each.

Network Properties. It is desirable to verify that the ACAS Xu networks
assign correct scores to the output advisories in various input domains. Fig. 7
illustrates this kind of property by showing a top-down view of a head-on en-
counter scenario, in which each pixel is colored to represent the best action if
the intruder were at that location. We expect the DNN’s advisories to be con-
sistent in each of these regions; however, Fig. 7 was generated from a finite set

No specification Geometric specification
Formal verification: G. Katz et al, 2017

19

Some other limitations

Hardware is not as perfect as we so�ware people like to assume.
(Skylake HT bug, Rowhammer, Meltdown, Spectre, . . .)

Specification languages are in their infancy.
(Domain-specific specification languages?)

We teach logic badly in maths and CS courses.

20

Try and prove your programs.

They will thank you for that.

21

	Program proof
	Frama-C WP demo
	Programming with a proof assistant
	Coq demo
	Is software perfection within reach?

