Open Source Numbers Everybody
Should Know

Heather Miller

@heathercmiller

BOBKonf, February 28th 2020, Berlin, Germany

isn(s)tituteAFQr
FTWARE :
RESEARCH  OCN0O| of Computer Science



OH HAI

A bit about me

Assista
School of Computer Science

@ CMU



OH HAI
A bit about me ™ scalacenter

FOU nd@d the Scal_a Cente r' 2016 % For open source. For education.

Assistant Professor in the
School of Computer Science
@ CMU



r

A bit about me - scalacenter

FOU nd@d the Scala Cente r' 2016 | For open source. For education.

PhD in Computer Science, 2015
under Martin Odersky

Assistant Professor in the
School of Computer Science
@ CMU



',

A bit about me : scalacenter

For open source. For education.
Founded the Scala Center, 2016
Worked a lot on Scala

PhD in Computer Science, 2015 » Scala Futures

under Martin Odersky » Scala’s concurrency libraries
 Typeclass derivation

» Lightweight type system
extensions

* Programming models for
distributed programming

 Coursera MOQOCs

A

]
Assistant Professor in the
School of Computer Science
@ CMU



A bit about me > scalacenter

FOU nded the Sca l_a Cente r' 201 6 For open source. For education.

| | Worked a lot on Scala
PhD in Computer Science, 2015 - Scala Futures

under Martin Odersky » Scala’s concurrency libraries

 Typeclass derivation
» Lightweight type system
extensions

* Programming models for
distributed programming

Joined CMU as an » Coursera MOOCs
h assistant prof in 2018

2 .
: L My research:
Assistant Proﬁessor In the o . . .
School of Computer Science - bringing programming language techniques to dist. systems

@ CMU - making microservice architectures more reliable
- distributed actor runtimes




Building a new lab at CMU

Doing stuff like making building microservice-based apps feel like
you're programming in one language rather than 20. Building and
formalizing language-level distributed and concurrent
programming abstractions.

with some fine folks!

Chris Meiklejohn
@cmeik

Matthew Weidner

Assistant Professor in the
School of Computer Science

+ you?
We're always looking for new students!




Building a new lab at CM

Doing stuff like making building microservice-based apps fee
you're programming In one language rather than 20. Building and
formalizing language-level distributed and concurrent
programming abstractions.

with some fine folks!

Chris Meiklejohn
@cmeik

Matthew Weidner

=,

N A} ;
Assistant Professor in the
School of Computer Science

+ you?
We're always looking for new students!




Just a bit more detail about some of our
current projects...

Rethinking the mathematical What if fault-injection was a sort
formulation of CRDTs of testing done at Cl time?
Matthew Weidner Chris Meiklejohn

@cmeik We present a novel testing

methodology for distributed
applications, called

We present a new
construction:

. which combines With RDD, developers ﬁrst..
the operations of two CRDTS specify application behavior
into one while handling as Integration tests. Then, a

: : novel fine-grained fault
conflicts between their injection approach that uses

concurrent operations in a exhaustive search is used to
uniform way. find bugs in the application.



Just a bit more detail about some of our
current projects...

Can we check global configurations
of microservices before they’re
deployed?

How do ideas in open-source
developer communities spread?

Data structures for federated
machine learning



Can we check global configurations
of microservices before they’re
deployed?

How do ideas in open-source
developer communities spread?

Data structures for federated
machine learning



Then why are you
talking about
open source stuff?




The two hardest problems in computer science
are:

- Jeff Bigham



The two hardest problems in computer science
are: (i) people,

- Jeff Bigham



The two hardest problems in computer science
are: (i) people, (ii), convincing computer scientists
that the hardest problem in computer science is
people,

- Jeff Bigham



The two hardest problems in computer science
are: (i) people, (ii), convincing computer scientists
that the hardest problem in computer science is
people, and, (iii) off by one errors.

- Jeff Bigham



I’'m the founding director.

And suddenly my focus is 200% This shift in focus was eye-opening.

what Is happening In open |
source Scala, and how we can | quickly observed problems with the

keep growing our ecosystem, health of some of our core projects in
tools, and improve developer our own ecosystem that was cause for

experience for anyone. concern.

Not only people paying into the Scala And what's worse, this trend Is
Center. But anyone with an internet common throughout the open

connection. A good developer source community.
experience should be free.




So | started collecting data on these fast-changing trends




Things that are changing fast:
& that more people should be aware of

How we
build
software

What we actually
do nowadays when
we sit down to
build an app.

What SWEs should
know, how much

The common experience they

infrastructure and tools have, and who
that we all depend on they are.



Things that are changing fast:
& that more people should be aware of

How we
build
software

What we actually
do nowadays when
we sit down to
build an app.

What SWEs should
know, how much

The common experience they

infrastructure and tools have, and who
that we all depend on they are.

This talk will cover fast-changing trends in these 3 areas



How people are
getting into tech
IS




We all already know that hiring is difficult



We all already know that hiring is difficult

Bloomberg

Technology
Demand for Programmers Hits Full Boil as

U.S. Job Market Simmers

By Craig Torres
March 8, 2018, 12:00 AM EST

LIVE ON BLOOMBERG 2 )
Watch Live TV > /ll“
Listen to Live Radio > ) LT N g




We all already know that hiring is difficult

Bloomberg

Technology

Demand for Programmers Hits Full Boil as
U.S. Job Market Simmers

By Craig Torres
March 8, 2018, 12:00 AM EST

“ HE  EFE =TI

> Mapbox finds success with women coders whorefer friends 2018's Software Engineering Talent
Shortage— It’s quality, not just
quantity

November 12th 2017 W TWEET THIS

Forrester projects that firms will pay 20% above market for
quality engineering talent in 2018

\

= ¥

. :




We all already know that hiring is difficult

Bloomberg

Technology

Demand for Programmers Hits Full Boil as
U.S. Job Market Simmers T HACKERNDOA

By Craig Torres
March 8, 2018, 12:00 AM EST

QUARTZ -, I

R 2018's Software Engineering Talent
Shortage— It’s quality, not just

GOOD JOB ODDS

You probably should have .
majored in computer science quantity

By Sarah Kessler « March 10, 2017 November 12th 2017 N TWEET THIS

Forrester projects that firms will pay 20% above market for
quality engineering talent in 2018

|

an



There's a shortage of tech workers

Subsequent slides focus on the US, but I'm going to start by
saying that this is a problem in Germany too:



HOW PEOPLE ARE GETTING INTO TECH IS CHANGING
There's a shortage of tech workers

Data from May 2019

2019

8%

of jobs In
Germany destined

to developers

17% of all available jobs In
Dresden are for developers

Data from Taledo https://www.taledo.com/blog/

job-search/developer-j

ob-germany-infographic



https://www.taledo.com/blog/job-search/developer-job-germany-infographic

HOW PEOPLE ARE GETTING INTO TECH IS CHANGING
There's a shortage of tech workers

Data from May 2019

Open developer

jobs by major city

2019 Berlin 4,754

Munich 4,601

0 Hamburg 2,749

8 /0 Frankfurt 2,202

of jObS N Stuttgart 1,989

Germany destined Cologne o
to developers

17% of all available jobs in Nuremburg 1,418

Dresden are for developers

Data from Taledo https://www.taledo.com/blog/

job-search/developer-;

# open positions

ob-germany-infographic



https://www.taledo.com/blog/job-search/developer-job-germany-infographic

There's a shortage of tech workers

Data from May 2019

2019

8%

of jobs In

Germany destined

to developers

17% of all available jobs In
Dresden are for developers

_Open developer
Jjobs by major city

Berlin
Munich
Hamburg
Frankfurt
Stuttgart

Cologne

Nuremburg

#t open positions

4 754

4,601

2 749

2,202

1,989

1,728

1,418

Open developer
jobs by state

Bavaria

Baden-
Wurttemberg

North Rhine-
Westphalia

Berlin
Hesse
Hamburg

Lower Saxony

Data from Taledo https://www.taledo.com/blog/job-search/developer-job-germany-infographic

i#t open positions
10,018
7,820
6,915
4,789
3,830
2,750

2,130


https://www.taledo.com/blog/job-search/developer-job-germany-infographic

Students graduating with CS/IT-related bachelor’s degrees

200k

There's a e b 5 detees o
shortage

B (S degrees awarded

oftech BB
workers |
OII|||IIIIII||||||||IIIII

US-centric view! 2000 2005 2010 2015 2020 2025

*Department of Labor Statistics, Employment Projections (Occupational Category: 15-1100) Includes new and replacement jobs
and assumes current undergraduate degree (CIP 11) production levels persist




Students graduating with CS/IT-related bachelor’s degrees

200k

4
Th e re S a B projected CS degrees awarded

shortage | R
Of tECh Last available data point:

100k

wo rke rs 2014-2015: 60,309 degrees
\Ug
50k
*note, this Is a 0II IIIIIIIIII

US-centric view! 2000 2005 2010 2015 2020 2025

*Department of Labor Statistics, Employment Projections (Occupational Category: 15-1100) Includes new and replacement jobs
and assumes current undergraduate degree (CIP 11) production levels persist




Students graduating with CS/IT-related bachelor’s degrees

200k

4
Th e re S a B projected CS degrees awarded

shortage | R
Of tECh Last available data point:

2014-2015: 60,309 degrees growth of
WO rke I'S . ~1.4% per year
50k

US-centric view! 2000 2005 2010 2015 2020 2025

*Department of Labor Statistics, Employment Projections (Occupational Category: 15-1100) Includes new and replacement jobs
and assumes current undergraduate degree (CIP 11) production levels persist




Students graduating with CS/IT-related bachelor’s degrees

200k

4
Th e re S a B projected CS degrees awarded

shortage | R
Of tECh Last available data point:

100k

wo rke rs 2014-2015: 60,309 degrees
\Ug
50k
*note, this Is a 0II IIIIIIIIII

US-centric view! 2000 2005 2010 2015 2020 2025

*Department of Labor Statistics, Employment Projections (Occupational Category: 15-1100) Includes new and replacement jobs
and assumes current undergraduate degree (CIP 11) production levels persist




Students graduating with CS/IT-related

? 200K Meanwhile,
Th e re S a B projected CS degrees awarded over 500,000
B (CS degrees awarded Computing-
S h O rtage related job
150K openings

chelor's degrees
Of tECh Last available data point: ight now
workers 2014-2015: 60,309 degrees

100k III|||

2000 2005 2010 2015 2020 2025

50k

*note, this is a I
0

US-centric view!

*Department of Labor Statistics, Employment Projections (Occupational Category: 15-1100) Includes new and replacement jobs
and assumes current undergraduate degree (CIP 11) production levels persist




200k

of tech

There’s n Brojected S degrees awardes

Still a B (S degrees awarded

shortage

workers, .
when you

include

code sok

bootcamps

| |

*note, this is a US-centric 2000 2005 2010 2015 2020 2025
view!

*Department of Labor Statistics, Employment Projections (Occupational Category: 15-1100) Includes new and replacement jobs
and assumes current undergraduate degree (CIP 11) production levels persist




By 2026, there will be 3.5 million
computmg-related job openings*

3.5M

B # of US computing-related job openings by 2026
B graduates of coding bootcamps

3M B projected CS degrees awarded
B (S degrees awarded

2.5M
oM
1.5M
1M
0.5M
*note, this is a I
. . e B B B D S e s e Daaamn DD DS D D - -
US-centric view! 02000 2005 2010 o 2020 2025

*Department of Labor Statistics, Employment Projections (Occupational Category: 15 -1100) Includes new and replacement jobs
and assumes current undergraduate degree (CIP 11) production levels persist




By 2026, there will be 3.5 million
computmg-related job openings*

3.5M

B # of US computing-related job openings by 2026
B graduates of coding bootcamps

3M B projected CS degrees awarded
B (S degrees awarded

2.5M

2M It Is estimated that only 19% of these jobs can be filled by US
computing degree bachelor’s degree recipients.

1.5M

™
0.5M
*note, this is a _ —_——
US-centric view! O g s e e e o e S B - 2028

*Department of Labor Statistics, Employment Projections (Occupational Category: 15 -1100) Includes new and replacement jobs
and assumes current undergraduate degree (CIP 11) production levels persist




A large portion of professional developers are new

= stackoverflow

Deve ‘ O per S u rvey Res U |-tS Years Coding Professionally
Years Coding Professionally 2017 e

Less than a year
3-5 years
1to 2 years

6-8 years
2 to 3 years

3 to 4 years 9-11 years

4 to 5 years 12-14 years

5 to 6 years 15-17 years

6 to 7 years . .
18-20 years Years Coding Professionally

7 to 8 years
21-23 years
8 to 9 years Less than 5 years 41.0% |

24-26 years
9 to 10 years 5to9years 26.9% |

10 to 11 years 27-29 years

10 to 14 years 14.5% |

11 to 12 years 30 or more years 15to 19 years 7.4%

12t0 13
o 13 years 20 to 24 years 5.5%

13 to 14 years
25to 29 years 2.0%

14 to 15 years
30to 34 years 1.5%

15 to 16 years

35to 39 years 0.7%
16 to 17 years

40 to 44 years 0.3%
17 to 18 years

45t0 49 years 0.1%
18 to 19 years

0
19 to 20 years 50 years ormore 0.1%

20 or more years




A large portion of professional developers are new

= stackoverflow

Deve ‘ O per S u rvey Res U |-tS Years Coding Professionally
Years Coding Professionally 2017 e

Less than a year
3-5 years
1to 2 years

6-8 years
2 to 3 years

3 to 4 years 9-11 years

4 to 5 years 12-14 years

5 to 6 years 15-17 years

6 to 7 years

18-20 years Years Coding Professionally

7 to 8 years
21-23 years
8 to 9 years Less than 5 years 41.0% |

24-26 years
9 to 10 years 5to9years 26.9% |

10 to 11 years 27-29 years

10 to 14 years 14.5% |

11 to 12 years 30 or more years 15to 19 years 7.4%

12 to 13 years 5 O .1 % h ave 20 to 24 years 5.5%

13 to 14 years
2.0%

14 to 15 years u p to Sy rS Of 25 to 29 years -
. 30 to 34 years 1.5%
experience y

16 to 17 years

35to 39 years 0.7%

(20% 2yrS or leSS, 40 to 44 years 0.3%
32% 3yrs or less) 451049 years  0.1%

50 years ormore 0.1%

17 to 18 years
18 to 19 years
19 to 20 years

20 or more years




A large portion of professional developers are new

= stackoverflow

Deve ‘ O per S u rvey Res U |-tS Years Coding Professionally
Years Coding Professionally 2017 e

Less than a year

2018

3-5 years
1to 2 years

6-8 years

2 to 3 years 0.1 years 57.5% have
y up to 5yrs of

4 to 5 years 12-14 years

S5 to 6 years 15-17 years experience

6 to 7 years

18-20 years Years Coding Professionally

7 to 8 years
21-23 years
8 to 9 years Less than 5 years 41.0% |

24-26 years
9 to 10 years 5to9years 26.9% |

10 to 11 years 27-29 years

10 to 14 years 14.5% |

11 to 12 years 30 or more years 15to 19 years 7.4%

12 to 13 years 5 O .1 % h ave 20 to 24 years 5.5%

13 to 14 years
25to 29 years 2.0%

up to 5yrs of
10 16 e experience

16 to 17 years

30to 34 years 1.5%

35to 39 years 0.7%

(20% 2yrS or leSS, 40 to 44 years 0.3%
32% 3yrs or less) 451049 years  0.1%

50 years ormore 0.1%

17 to 18 years
18 to 19 years
19 to 20 years

20 or more years




A large portion of professional developers are new

= stackoverflow

Deve ‘ O per S u rvey Res U |-tS Years Coding Professionally
Years Coding Professionally 2017 e

Less than a year

2018

3-5 years
1to 2 years

6-8 years

2 to 3 years 0.1 years 57.5% have
y up to 5yrs of

4 to 5 years 12-14 years

S5 to 6 years 15-17 years experience

6 to 7 years

18-20 years Years Coding Professionally

7 to 8 years
21-23 years
8 to 9 years Less than 5 years 41.0% |

24-26 years
9 to 10 years 5to9years 26.9% |

10 to 11 years 27-29 years

10 to 14 years 14.5% |

11 to 12 years 30 or more years 15to 19 years 7.4%

12 to 13 years 5 O .1 % h ave 20 to 24 years 5.5%

13 to 14 years
2.0%

14 to 15 years u p to Sy rS Of 25 to 29 years -
. 30 to 34 years 1.5%
experience y

16 to 17 years

35to 39 years 0.7%

(20% 2yrS or leSS, 40 to 44 years 0.3%
32% 3yrs or less) 451049 years  0.1%

50 years ormore 0.1%

17 to 18 years

18 to 19 years

%1% have less tha
5yrs of experience

19 to 20 years

20 or more years




We need to adapt, culturally, to
make room for lots more
newcomers

The demand for developers is
just going to get more and more
ridiculous.

The years of experience of

practicing SWEs Is dropping
overall.

There's a tidal wave of
newcomers entering our
profession, and it's not going to
slow down.

It's going to pick up speed.




We need to adapt, culturally, to
make room for lots more
newcomers

The demand for developers is
just going to get more and more
ridiculous.

The years of experience of

practicing SWEs Is dropping
overall.

There's a tidal wave of
newcomers entering our
profession, and it's not going to
slow down.

It's going to pick up speed.

What do we do?

"New frameworks are lowering the barrier to
entry," Caleb Fristoe (founder of CodeTN) says;
that's a far cry from the days when you had to
learn the syntax of several programming
languages to build useful software. "Rather than
typing these seven lines of code to get a menu to
pop down, you just download the framework from
a code base that allows you to do that in a
simpler way," he explains. "Frameworks are taking
the hard work that developers prided themselves
on out of the equation.”

The New Jobs

By Marina Krakovsky
Communications of the ACM, January 2018, Vol. 61 No. 1, Pages 21-23
10.1145/3157077

https://cacm.acm.org/magazines/2018/1/223883-the-
new-jobs/fulltext



Existing devs are burning out

“Unable to fill tech vacancies, employers
shuffle off additional duties to current
employees, which leads to burnout and has
a negative impact on local business
development. Over 30% of respondents
surveyed by Indeed admit that this issue
accelerates staff turnover.”

US Tech Talent Shortage in Numbers
March 26, 2019

https://www.daxx.com/blog/development-trends/software-
engineer-shortage-us-2019

“With companies unable to fill open
positions, current employees are expected
to fill the gaps. In many cases this results In
employee turnover. Over a third of
respondents we surveyed (36%) said the lack
of timely hiring has caused burnout in
existing employees and affected their
businesses.”

Is the Tech Talent War Hurting Innovation? Hiring

Managers and Tech Recruiters Respond
December 5, 2016

http://blog.indeed.com/2016/12/05/impact-of-tech-talent-
shortage/



Obviously, increased diversity would help

We know that the people who develop software are not a
representative of sample of society. Making more
underrepresented minorities at home in tech 1s an obvious
solution to Increasing our numbers.

But also...

Immigration = good, more tech workers
Remote workers = good, more tech workers



WE ACTUALLY HAVE TO DO SOMETHING

WE PROBABLY NEED TO BE BETTER HUMANS TO THOSE AROUND US.

WE PROBABLY ACTUALLY ALL NEED TO GET GOOD AT MENTORING
ONE ANOTHER.




WE ACTUALLY HAVE TO DO SOMETHING

WE PROBABLY NEED TO BE BETTER HUMANS TO THOSE AROUND US.

WE PROBABLY ACTUALLY ALL NEED TO GET GOOD AT MENTORING
ONE ANOTHER.

But also...

Diversity = great, more of the population can be tech workers
Immigration = good, more tech workers
Remote workers = good, more tech workers



We need to care about
diversity for more than
economics alone.




Increased diversity = increased productivity

Research from one

of my colleagues: Aside: Why should you care about gender diversity?
There is evidence that Productivity boosts
software teams that % DIVERSE TEAMS ARE MORE PRODUCTIVE!

are more diverse are
more productive.

Holding other

confounds fixed, teams

that are more diverse o st e T
WI th Fes p e Ct to ge N d er production (commits per quarter),

and/or tenure/ | Bt small effecs
experience tend to write

code faster than teams N e et ™
that are less diverse. et STRIEIDE L

Carnegie Mellon University S T R
School of Computer Science




How do we stop people from disengaging?

Women disengage earlier than men:

1.00 -
—I Gender

| Male

>
 —
=
4y
0
O
—
Q.
®©
=
>
—
-
N

24 36
Time iIn months

Carnegie Mellon University S T R
School of Computer Science




How do we stop people from disengaging?

“l have used a fake GitHub handle [...] so that people
would assume | was male”

Article

‘Patches don’t have gender
What is not open in open
source software

Dawn Nafus
Intel Labs, USA

Abstract
While open source software development promise
software production often compared to a gift econ
than other forms of software production. The speci
openness in everyday practice exacerbates the exclu
construct that affects more than intellectual prop
ideas about authorship, agency, and the circumstan
can and cannot be exchanged. While open source devt
to the social, notions of openness tie the social to
one another and relieving them of obligations that
forms of gift exchange. In doing so, men monopoliz
de-legitimize the kinds of social ties necessary to bu

new media & society |

Perceptions of Diversity on G

Bogdan Vasilescu
University of California, Davis
vasilescu@ucdavis.edu

Abstract—Understanding one’s work environment is important
for one’s success, especially when working in teams. In virtual
collaborative environments this amounts to being aware of the
technical and social attributes of one’s team members. Focusing
on Open Source Software teams, naturally very diverse both
socially and technically, we report the results of a user survey
that tries to resolve how teamwork and individual attributes
are perceived by developers collaborating on GITHUB, and how
those perceptions influence their work. Our findings can be used

as complementary data to quantitative studies of developers’
behavior on GITHUB.

I. INTRODUCTION

Software development is technical and knowledge-intensive,
but also human-centric and collaborative, benefiting from the
social attributes of the people involved. Open Source Software
(OSS) communities, in particular, tend to be quite diverse,
with contributors ranging from professional developers to
volunteers, all with varied personalities, educational and cul-
tural backerounds ace ocender and expertise Yet desnite

Vladimir Filkov
University of California, Da
filkov@cs.ucdavis.edu

attribute:
work en
our kno‘T
on prodt
the very
online
In thi
in softw
tries to
perceiv
those p
of rese
0SS t
their od
organic
while in
channel

Developers are aware of each other’s gender

Which of the following characteristics of your team

members are you aware of?

/4% + Programming skills
48% < Gender

45% + Real name

42% < Social skills

40% < Country of residence
39% < Personality

31% + Reputation as programmer
30% < Ethnicity

30% + Employment

28% + GitHub experience
26% + Educational level
23% + Age

11% « Hobbies

4% < Political views

WiIsy rrzawesr o s e T

pull-based develooment model 1191 enables anvone to submat




How do we stop people from disengaging?

People on informationally diverse teams engage longer:

Being part of teams with more diverse information ~
more prolonged engagement, esp. for women

More social capital ~ more prolonged engagement

Information diversity should
reduce the risk of demographic-
based echo chambers.

Survival probability
g

Recurring cohesion
~= High
~+ Low

Take away: Invest in building social capital o
& Foster informationally diverse teams ' |

Time in months

Carnegie Mellon University S T R
School of Computer Science




SCIENCE ACTUALLY SAYS THAT DIVERSITY +
PEOPLE MENTORING EACH OTHER MAKES
YOU BUILD BETTER SOFTWARE. LIKE REALLY.



A bit about
how we build




<& C' @& https://www.blackducksoftware.com/2016-future-of-open-source A @ B v k¢ El *

Black Duck
(now Synopsys)
runs an annual survey BLACK SOLUTIONS ~ PRODUCTS ~ ONDEMAND  PARTNERS  CUSTOMERS
asking companies
about their open
source use.

@ Contact Blog  Resources Research  Support @ LIVE DE

The Tenth Annual Future of Open Source Survey

Open source viewed as today’s preeminent architecture and an engine for innovation, but significant challenges remain in ope

T h ey S U rvey >1 ’ O O O security and management practices
companies about their
open source usage.

the future of

OPEN
SOURCE




How People Build Software Changed Dramatically Since 2010

2010

39%

of companies
sald they “ran on
open source”

Interviewed 1,240 companies (2015)
Interviewed 1,313 companies (2016)



OPEN SOURCE SURVEYS: 2015 & 2016 Black Duck “Future of Open Source” Survey
How People Build Software Changed Dramatically Since 2010

2010 2015

O O
39% WYL
of companies of companies
FICROEYACHNOII said they “ran on

open source” open source”

Interviewed 1,240 companies (2015)
Interviewed 1,313 companies (2016)

uture-of-open-source



OPEN SOURCE SURVEYS: 2015 & 2016 Black Duck “Future of Open Source” Survey
How People Build Software Changed Dramatically Since 2010

2010 2015 2X

This is up 2x
(y (y over 2010!
SN /8%
of companies of companies
FICRUACEUNIEE said they “ran on

open source” open source”

Interviewed 1,240 companies (2015)
Interviewed 1,313 companies (2016)

uture-of-open-source



OPEN SOURCE SURVEYS: 2015 & 2016 Black Duck “Future of Open Source” Survey
How People Build Software Changed Dramatically Since 2010

2010 2015 2X

This is up 2x
(y O over 2010!
39% /8%
of companies of companies COMPANIES ARE
FICROEYACHNOII said they “ran on DEPENDING MORE

AND MORE ON OSS!

open source” open source”
Interviewed 1,240 companies (2015)

Interviewed 1,313 companies (2016)

uture-of-open-source



Why did companies suddenly decide to shift building atop 0SS?



Why did companies suddenly decide to shift building atop 0SS?

Top 3 reasons to
use 0SS:

- quality of solutions

- competitive features &
technical capabilities

- ability to customize & fix



Why did companies suddenly decide to shift building atop 0SS?

Top 3 reasons to OSS vs
use 0SS: proprietary:
- quality of solutions - of companies consider

OSS options before

_ competitive features & proprietary alternatives

technical capabilities

- ability to customize & fix



OPEN S:OURCE SUR.VEYS: 2015 & 2016 Blgck Duck “Fl.Jtu re of Open Source” Survey
Why did companies suddenly decide to shift building atop 0SS?

2016 2015

Top 3 reasons to :

use OSS: proprietary:

- #1 quality of solutions - 66% of companies consider

OSS options before

- #2 competitive features & proprietary alternatives

technical capabilities

- #3 ability to customize & fix



The rapid increase in reliance on open source continues

6 O % Main attributed

reason:
of companies surveyed ~ low cost with no

Increased open source usage. vendor lock-in



D18 Survey (was Black Duck)

Everything is OSS now

Scanned/analyzed

(anonymized) data of over 1,100
commercial code bases.

ports/2018-ossra.pdf



Everything is OSS now

Scanned/analyzed

(anonymized) data of over 1,100
commercial code bases.

Black Duck audits found open
source components in 96% of
the applications scanned, with
an average 257 components per
application.

Open source
components In
of applications

scanned!

Average of

open source
components per
application!

D18 Survey (was Black Duck)

ports/2018-ossra.pdf



Everything is OSS now

Scanned/analyzed

(anonymized) data of over 1,100
commercial code bases.

Black Duck audits found open
source components in 96% of
the applications scanned, with
an average 257 components per
application.

Open source
components In
of applications

scanned!

Average of

open source
components per
application!

D18 Survey (was Black Duck)

ports/2018-ossra.pdf



Everything is OSS now

Scanned/analyzed

(anonymized) data of over 1,100

commercial code bases.

Black Duck audits found open
source components in 96% of
the applications scanned, with
an average 257 components per
application.

Open source
components In
of applications

scanned!

Average of

open source
components per
application!

D18 Survey (was Black Duck)

In 2017, 36% of code base was
open source components. In
2018, that number Is 57%.

The average percentage of
codebase that was open source
was 57% vs. 36% last year. Many
applications now contain more
open source than proprietary code.

ports/2018-ossra.pdf



Everything is OSS now

Scanned/analyzed

(anonymized) data of over 1,100
commercial code bases.

- Open source
components In
of applications

scanned!

- Average of
open source
COmpOﬂeﬂtS per
Black Duck audits found open ) p p [| Cati on!

source components in 96% of
the applications scanned, with
an average 257 components per
application.

D18 Survey (was Black Duck)

The average percentage of
codebase that was open source
was 57% vs. 36% last year. Many
applications now contain more

ports/2018-ossra.pdf

open source than proprietary code.

In 2017, 36% of code base was
open source components. In
2018, that number Is 57%.

MANY APPS
ARE NOW
MORE OPEN

SOURCE
CODE THAN
PROPRIETARY




OPEN SOURCE SURVEYS: 2018 Tidelift Professional Open Source Survey
Software now is mostly made out of OSS components

Most applications are built on top of a
foundation of 70% or more open source code

. - . - . . . - . . Our custom application code/ -— Top Iayer of our app,
B BB EEEBEBE B busnesslogic OUI’jOb to support
EEEEEEEEENRS
EEEEEEEEER .
700 NN NN OO OO OO OO 00 PP
NN W ol sobe ey Gul el .
BB B BEBBEBEBEBB BB ekl Active Admin
EEEEEEEEEN
EEEEEEEERERE,

7% B B B B B B B B B BEEchulhivipieNigiadlc Supported by big vendors
Examples: Linux, Kubernetes, or C|0Ud provi ders

MongoDB, Docker
B . g
IDELIF
https://cdn2.hubspot.net/hubfs/4008838/Introduction_to_Managed Open_Source.pdf

20%




TAKE A MINUTE TO INTERNALIZE THALT.



TAKE A MINUTE TO INTERNALIZE THALT.

Synopsys:
in 2017: 36% of code bases are open source components.
IN 2018: 57% of code bases are open source components.



Synopsys:

in 2017: 36% of code bases are open source components.
IN 2018: 57% of code bases are open source components.

Tidelift:
IN 2018:70% of code bases are open source components,
only 20% is custom application/business logic.



TAKE A MINUTE TO INTERNALIZE THALT.

Synopsys:

in 2017: 36% of code bases are open source components.
IN 2018: 57% of code bases are open source components.

Tidelift:
IN 2018:70% of code bases are open source components,
only 20% is custom application/business logic.




Software now constructed
from OSS puzzle pieces

Blog article:
Ad
‘lmtagnum o] c\f!icnegqtgch for

your startup

Mike Krieger
Instagram co-founder

Borrow instead of building whenever
possible

There are hundreds of fantastic open-source
projects that have been built through the
hard experience of creating and scaling
companies; especially around infrastructure
and monitoring...that can save you time and
let you focus on actually building out your
product.




Software now constructed
from OSS puzzle pieces

Nadia Eghbal -Follow
2 subtle + overt = subvert
Jan 25 - 4 min read

Blog article:
Instagram Advice on
picking tech for Open source was worth at least $143M of
Mike Krieger your startup Instagram’s $1B acquisition
I nsta g ram co _fo un d ar Every tech company built after 2000 has benefitted from open source
infrastructure—that is, free, public code that anybody can use to build
software.
Borrow instead of building whenever
D OSSi b l e It’s saved companies countless dollars, developer hours, and headaches to be

able to use someone else’s code to get up and running instead of having to

build everything from scratch.

Th e.re are h un d red S Of fa nt.aStI C open-source I decided to take a stab at calculating how much that infrastructure is

p rOJ eCtS th at have bee N b ul l.t th o Ugh th e actually worth to a company.

hard experience of creating and scaling

compan ies; es peCia “.y around infrastructure Instagram is a great example to look at, not just because of its acquisition
and monitori ngth at can save you time and price, but how auickly it was able to scale and exit.

let you focus on actually building out your

pro duct. https://medium.com/@nayafia/open-source-was-worth-at-

least-143m-of-instagram-s-1b-
acquisition-808bb85e4681#.d6gzzr9nk




Yet, most have to self-support their 0SS work

How is work on open source funded today?

Consulting & services

Crowdfunding & donations

Grants

. of respondents said
coundations & consortums [ 3% that they are required
el i to financially support
T s B their open source work
sooks 8 merchandise ] 1% with their own funds,
oemantoense 11X or that they receive no

Dual license

Venture capital °: eXte r n a l. fu n d i n g at a I. l..

-
O
o)
e
®
O
@)
k=
©
c
-
I

30% 40% 50% 60% 70%

e = o o
IDELIF Over 1,200 respondents



NOW,

A bit about




Of course,
things could get

terrifying from
o

here



OpenSSL

Cryptography and SSL/TLS Toolkit

In 2014,

66% of all web servers wore
using OpenSSL

Meanwhile, OpenSSL was maintained

by only a few volunteers

ys://fordfoundcontent.blob.core.windows.net/media/2976/roads-
-bridges-the-unseen-labor-behind-our-digital-infrastructure.pdf



OpenSSL

Cryptography and SSL/TLS Toolkit

In 2014,

66% of all web servers wore
using OpenSSL

Meanwhile, OpenSSL was maintained

by only a few volunteers

Steve Marquess, noticed that one contributor,
Stephen Henson, was working full time on
OpenSSL. Curious, Marquess asked him what he did
for income, and was shocked to learn that Henson
made one-fifth of Marquess’'s salary.

ys://fordfoundcontent.blob.core.windows.net/media/2976/roads-
-bridges-the-unseen-labor-behind-our-digital-infrastructure.pdf



OpenSSL

Cryptography and SSL/TLS Toolkit

In 2014,

66% of all web servers wore
using OpenSSL

Meanwhile, OpenSSL was maintained

by only a few volunteers

Steve Marquess, noticed that one contributor,
Stephen Henson, was working full time on
OpenSSL. Curious, Marquess asked him what he did
for income, and was shocked to learn that Henson
made one-fifth of Marquess’'s salary.

Marquess had always considered himself to be a
strong programmer, but his skills paled in
comparison to Henson's. ... Henson had been

working on OpenSSL since 1998. @b s://fordfoundcontent.blob.core.windows.net/media/2976/roads-
-bridges-the-unseen-labor-behind-our-digital-infrastructure.pdf




OpenSSL “I had always assumed, (as had the rest

Cryptography and SSL/TLS Tookt of the world) that the OpenSSL team
In 2014, was large, active, and well resourced.”

66% of all web servers ware — Steve Marquess
using OpenSSL

Meanwhile, OpenSSL was maintained

by only a few volunteers

Steve Marquess, noticed that one contributor,
Stephen Henson, was working full time on
OpenSSL. Curious, Marquess asked him what he did
for income, and was shocked to learn that Henson
made one-fifth of Marquess’'s salary.

Marquess had always considered himself to be a
strong programmer, but his skills paled in

comparison to Henson's. ... Henson had been
working on OpenSSL since 1998. i s://fordfoundcontent.blob.core.windows.net/media/2976/roads-
-bridges-the-unseen-labor-behind-our-digital-infrastructure.pdf




OpenSSL

Cryptography and SSL/TLS Toolkit

In 2014,

66% of all web servers wore
using OpenSSL

Meanwhile, OpenSSL was maintained

by only a few volunteers

Steve Marquess, noticed that one contributor,
Stephen Henson, was working full time on
OpenSSL. Curious, Marquess asked him what he did
for income, and was shocked to learn that Henson
made one-fifth of Marquess’'s salary.

Marquess had always considered himself to be a
strong programmer, but his skills paled in
comparison to Henson's. ... Henson had been
working on OpenSSL since 1998. |

“I had always assumed, (as had the rest
of the world) that the OpenSSL team
was large, active, and well resourced.”

— Steve Marquess

In reality, OpenSSL wasn’t even able
to support one person’s work.

ibs://fordfoundcontent.blob.core.windows.net/media/2976/roads-
-bridges-the-unseen-labor-behind-our-digital-infrastructure.pdf



OpenSSL

Cryptography and SSL/TLS Toolkit

“I had always assumed, (as had the rest
of the world) that the OpenSSL team

In 2014, was large, active, and well resourced.”
66% of all web servers were - Steve Marquess
using OpenSSL

Meanwhile, OpenSSL was maintained

by only a few volunteers

Steve Marquess, noticed that one contributor,
Stephen Henson, was working full time on

In reality, OpenSSL wasn’t even able
to support one person’s work.

OpenSSL. Curious, Marquess asked him what he did INDUSTRY, GOVERNMENT,
for income, and was shocked to learn that Henson ETC ARE OFTEN UNAWARE

made one-fifth of Marquess’'s salary.

Marquess had always considered
strong programmer, but his skills

comparison to Henson's. ... Henson had been

working on OpenSSL since 1998.

OF INFRASTRUCTUREFE’S
nimself to be a FUNDING ISSUES

naled In

b s://fordfoundcontent.blob.core.windows.net/media/2976/roads-
-bridges-the-unseen-labor-behind-our-digital-infrastructure.pdf



77

Ever heard of the trUﬁk factor?

Truck Factor:

the minimal # of developers that
have to be hit by a truck (or quit)
before a project Is incapacitated

- Look at the 133 most active projects on GitHub

-  Determine the amount of information
concentrated In individual team members from

commits.




Ever heard of the tI‘Uﬁk factor?

Truck Factor:

the minimal # of developers that
have to be hit by a truck (or quit)
before a project Is incapacitated

- Look at the 133 most active projects on GitHub

-  Determine the amount of information
concentrated In individual team members from

commits.




Table 2: Truck Factor results

Repositories

ALEXREISNER/GEOCODER, ATOM/ATOM-SHELL, BJORN/TILED, BUMPTECH /GLIDE,
CELERY /CELERY, CELLULOID /CELLULOID, DROPWIZARD /DROPWIZARD,
DROPWIZARD /METRICS, ERIKHUDA /THOR, EUGENY /AJENTI, GETSEN-
TRY /SENTRY, GITHUB/ANDROID, GRUNTJS/GRUNT, JANL/MUSTACHE.JS, JR-
BURKE/REQUIREJS,  JUSTINFRENCH/FORMTASTIC, KIVY/KIVY,  KOUSH/ION,
KRISWALLSMITH /ASSETIC, LEAFLET /LEAFLET, LESS/LESS.JS, MAILPILE/ MAILPILE,
MBOSTOCK /D3, MITCHELLH/VAGRANT, MITSUHIKO/FLASK, MONGOID/MONGOID,
NATE-PARROTT /FLASHLIGHT, NICOLASGRAMLICH / ANDENGINE, PAULAS-
MUTH /FNORDMETRIC, PHACILITY /PHABRICATOR, POWERLINE / POWERLINE,
PUPHPET /PUPHPET, RATCHETPHP/RATCHET, REACTIVEX/RXJAVA, SANDSTORM-
10 /CAPNPROTO, SASS/SASS, SEBASTIANBERGMANN/PHPUNIT, SFERIK/TWITTER,
SILEXPHP/SILEX,  SSTEPHENSON/SPROCKETS,  SUBSTACK/NODE-BROWSERIFY,
THOUGHTBOT/FACTORY _GIRL, THOUGHTBOT /PAPERCLIP, WP-CLI/WP-CLI

ACTIVEADMIN /ACTIVEADMIN, AJAXORG /ACE, ANSIBLE / ANSIBLE,
APACHE/CASSANDRA, BUP/BUP, CLOJURE/CLOJURE, COMPOSER/COMPOSER,

l'ruck Factor:
o :
. . | CUCUMBER/CUCUMBER, DRIFTYCO /IONIC, DRUPAL /DRUPAL, ELAS-
1 ,.] e m | n | m al Of d eve lo e rS th at TICSEARCH /ELASTICSEARCH, ELASTICSEARCH /LOGSTASH, EX-
= CILYS /ANDROIDANNOTATIONS, FACEBOOK / OSQUERY, FACEBOOK /PRESTO,

FrRIENDSOFPHP /PHP-CS-FIXER, GITHUB/LINGUIST, ITSEEZ/OPENCV,

(] ave tO be h |t by a tru Ck (Or q u |:) JADEJS/JADE, JASHKENAS/BACKBONE, JOHNLANGFORD/VOWPAL WABBIT,

. . . . JQUERY /JQUERY-UI, LIBGDX/LIBGDX, MESKYANICHI/BACKUP, NETTY /NETTY,
:) efo re a rO e Ct | S | n Ca a C | ta te C OMAB/DJANGO-SOCIAL-AUTH, OPENFRAMEWORKS/OPENFRAMEWORKS,

p J p PLATAFORMATEC/DEVISE, PRAWNPDF/PRAWN, PYDATA/PANDAS, RE-
SPECT/ VALIDATION, SAMPSYO/BEETS, SFTTECH/OPENAGE, SPARKLEMO-
TION /NOKOGIRI, STRONGLOOP /EXPRESS, THINKAURELIUS/TITAN, THINKU-

_ + : : + : PLLC /THINKUP, THUMBOR/THUMBOR, XETORTHIO /JEDIS
_O O k at »h e 133 m OSt a Ctl Ve p rOJ e C -S O n G |tH u b BBATSOV /RUBOCOP, BITCOIN /BITCOIN, BUNDLER /BUNDLER,
DIVIO /DJANGO-CMS, HAML /HAML, JNICKLAS /CAPYBARA,

. :) ete rMm | Ne th e amoun t Of | N '[:O M a:| on MOZILLA /PDF.JS, RG3/YOUTUBE-DL, MRDOOB/THREE.JS, SPRING-

. . o PROJECTS /SPRING-FRAMEWORK, YIISOFT /YII2
concentrated in individual team members from BOTO/BOTO,  BVLC/CAFFE, CODEMIRROR/CODEMIRROR,  GRA-
. DLE/GRADLE, IPYTHON /IPYTHON, JEKYLL/JEKYLL, JQUERY /JQUERY
CO m m |tS 10JS/10.JS, METEOR /METEOR, RUBY/RUBY, WORDPRESS/ WORDPRESS
CHEF / CHEF, COCOS2D/COCOS2D-X, DIASPORA /DIASPORA, EM-
BERJS /EMBER.JS, RESQUE /RESQUE, SHOPIFY/ACTIVE MERCHANT,
SPOTIFY /LUIGI, TRYGHOST/GHOST B
7 DJANGO/DJANGO, JOOMLA /JOOMLA-CMS, SCIKIT-LEARN /SCIKIT-LEARN
9 JETBRAINS/INTELLIJ-COMMUNITY, PUPPETLABS/PUPPET, RAILS /RAILS
11 SALTSTACK/SALT, SELDAEK/MONOLOG, V8/V8
12 GIT/GIT, WEBSCALESQL/WEBSCALESQL-5.6
13 FOG/FOG
14 opoo/0DOOo
18 PHP/PHP-SRC
19 ANDROID/PLATFORM FRAMEWORKS BASE, MOMENT/MOMENT
23 FZANINOTTO/FAKER
56 CASKROOM /HOMEBREW-CASK
130 TORVALDS/LINUX
250 HOMEBREW /HOMEBREW




Table 2: Truck Factor results

T R U C K Repositories

F ACTOR \LEXREISNER /GEOCODER, ATOM /ATOM-SHELL, BJORN/TILED, BUMPTECH //GLIDE,
ELERY /CELERY, CELLULOID /CELLULOID, DROPWIZARD /DROPWIZARD,

DROPWIZARD / METRICS, ERIKHUDA /THOR, EUGENY /AJENTI, GETSEN-

RESU LTSO RY/SENTRY, GITHUB/ANDROID, GRUNTJS/GRUNT, JANL/MUSTACHE.JS, JR-
@ SURKE /REQUIREJS,  JUSTINFRENCH/FORMTASTIC,  KIVY/KIVY,  KOUSH/ION,

RISWALLSMITH /ASSETIC, LEAFLET/LEAFLET, LESS/LESS.JS, MAILPILE/MAILPILE,

BOSTOCK /D3, MITCHELLH/VAGRANT, MITSUHIKO/FLASK, MONGOID/MONGOID,

ATE-PARROTT /FLASHLIGHT, NICOLASGRAMLICH/ ANDENGINE, PAULAS-

UTH/FNORDMETRIC, PHACILITY /PHABRICATOR, POWERLINE /POWERLINE,

"UPHPET /PUPHPET, RATCHETPHP/RATCHET, REACTIVEX /RXJAVA, SANDSTORM-
O/CAPNPROTO, SASS/SASS, SEBASTIANBERGMANN/PHPUNIT, SFERIK/TWITTER,

- T h e ILEXPHP /SILEX,  SSTEPHENSON/SPROCKETS,  SUBSTACK,/NODE-BROWSERIFY,

| HOUGHTBOT/FACTORY _ GIRL, THOUGHTBOT /PAPERCLIP, WP-CLI/WP-CLI
Tru CI( FaCto r‘ ° \CTIVEADMIN / ACTIVEADMIN, AJAXORG /ACE, ANSIBLE /ANSIBLE,
o ‘ h Igh e r \PACHE /CASSANDRA, BUP/BUP, CLOJURE/CLOJURE, COMPOSER/COMPOSER,
. . | UCUMBER/CUCUMBER, DRIFTYCO /IONIC, DRUPAL /DRUPAL, ELAS-
T ,-] e m | n I m a l Of d eve lo e rS t h at th T F ICSEARCH /ELASTICSEARCH, ELASTICSEARCH /LOGSTASH, EX-
- p e ILYS /ANDROIDANNOTATIONS, FACEBOOK / OSQUERY, FACEBOOK /PRESTO,

RIENDSOFPHP /PHP-CS-FIXER, GITHUB/LINGUIST, [TSEEZ/OPENCV,

(] ave tO b e h |t by a tru C k (O r q u |:) th e ADEJS/JADE,  JASHKENAS/BACKBONE, JOHNLANGFORD/VOWPAL WABBIT,

. . . . QUERY /JQUERY-UI, LIBGDX/LIBGDX, MESKYANICHI/BACKUP, NETTY /NETTY,
:) efo re a p rOJ e Ct | S | n Ca p a C | ta te C I )MAB /DJANGO-SOCIAL-AUTH, OPENFRAMEWORKS/OPENFRAMEWORKS,

b ette r . "LATAFORMATEC /DEVISE, = PRAWNPDF/PRAWN,  PYDATA/PANDAS, RE-
PECT/VALIDATION, SAMPSYO/BEETS, SFTTECH/OPENAGE, SPARKLEMO-
ION /NOKOGIRI, STRONGLOOP /EXPRESS, THINKAURELIUS/TITAN, THINKU-
LLC /THINKUP, THUMBOR/THUMBOR, XETORTHIO /JEDIS

— 00 k at :h S 133 m OSt aCtlve p rOJ eClsS On G ItH U b 3BATSOV /RUBOCOP, BITCOIN /BITCOIN, BUNDLER/BUNDLER,

DIVIO /DJANGO-CMS, HAML /HAML, JNICKLAS /CAPYBARA,

. :) ete rMm | Ne th e amoun t Of | N '[:O M a:| on OZILLA/PDF.JS, RG3/YOUTUBE-DL, MRDOOB/THREE.JS, SPRING-

>ROJECTS /SPRING-FRAMEWORK, YIISOFT /YII2

conce nt fate d | N | N d |V| d Ua l tea M MeMm b ers frO m O n ly a 3070 /BOTO,  BVLC/CAFFE, CODEMIRROR/CODEMIRROR,  GRA-

) DLE /GRADLE, IPYTHON /IPYTHON, JEKYLL/JEKYLL, JQUERY /JQUERY
CO m m |tS 0JS/10.JS, METEOR /METEOR, RUBY/RUBY, WORDPRESS/ WORDPRESS
h a n d fu l HEF /CHEF, COCO0S2D/COCO0S2D-X, DIASPORA /DIASPORA, EM-
3ERJS /EMBER.JS, RESQUE /RESQUE, SHOPIFY /ACTIVE MERCHANT,
POTIFY /LUIGI, TRYGHOST/GHOST B
Of DJANGO /DJANGO, JOOMLA /JOOMLA-CMS, SCIKIT-LEARN /SCIKIT-LEARN
. JETBRAINS /INTELLIJ-COMMUNITY, PUPPETLABS /PUPPET, RAILS /RAILS
t SALTSTACK /SALT, SELDAEK /MONOLOG, V8 /V8
p rOJ e C S IT /GIT, WEBSCALESQL/WEBSCALESQL-5.6
OG /FOG

With a )DOO/0DOO

HP / PHP-SRC

. \NDROID /PLATFORM _FRAMEWORKS BASE, MOMENT/MOMENT
I g eoe "ZANINOTTO /FAKER

ASKROOM /HOMEBREW-CASK
ORVALDS /LINUX
OMEBREW /HOMEBREW




A sampling of some low truck factors...

t) T
SHr J.s/grun | mbostock/d3
wp-cli/wp-cli
ReactiveX/RxJava
sass/sass
apache/cassandra
| | netty/netty
clojure/clojure
drupal/drupal

pydata/pandas



Ecosystem & Community
Is Everything




E:;pirical Analysis of
gramming Language Adoptio
I

10 years of -
repositor

to 5 y meta d :

90,000 open source prOje?::’ tracking up

Survey dat
a of devel
surv . opers ov .
> eys, ranging from 1,000 er multiple
spondents ’ to 13,000

\meyerov@eecs.berke

Abstract

Some pro gra.mm'mgl
others fail 10 grow
gether. This paper
the factors that lead
large datasets, including over
590,000 projects tracked by Ohloh,

1,000-13,000 programnmrs.

anguages bec

beyond their nic
uses survey me
to language @

adoption follows 2
nt for most langua

accou
many langud
have only secon

as perf

Third, developer
the overall nu

thodology
doption.

700,000 gourcel
d multiple surveys Of

dary 1mpo

OOPSLA’13

{ Programming Language Adoption

Ariel Rabkin

Princeton University
n.edu

asrabk'm@cs.pr'mceto

and whether t0 betona
adoption

ing when
the language
scale.

aid developers in determinl
. mental 1anguage: To date,
itatively studied in @ large
. Weuse 2 combination of sur-
sitory mining 0 investigate

to identify o
We analyze
Y guage choice.
amming language

orge projectss

adoption process:
cribe language popu-

What statistical properties des
1arity? We begin (Section 3) with an empirical analysis
of language Use qcross many open SOurce projects- Such

an eveals what trajectories languages
s 1 overall distribu-

g based on the kind

ton of language use, an
of project and developer X ] :
wer 1aw, which

_reliabil] We found that popularity follows a PO
means that ™M 4 in a small number

s will steadily ost usage is concentrate®
mber of lan- ar languages will still find

rtance in adop-
and experience

independent of age-
es if their education
ilies. Finally, when

, developers priori—
-ve static types

influence developer decision-
n? Section 4 examines the

when picking lan-

most
selectio

f developers
ing what

Which factors
making for Janguage
subjective motivations ©
guages for specific projects- Know
velopers helps language designers

their perceived needs.
we saw th
or in choosing

Through multiple
open source Jibraries as the dominant fact
sramming languages- gocial factors not tied 0 intrinsic 1an-
> tine personal Of team '




Empirical Analysis of

10 years of
repository m
eta data, tracki

to 5
90,000 open source projects

Surve
y data of developers over multipl
e

' ng fro
respondents S m 1rOOO to 13’000

Empirical

Leo A.

UC Berkeley *

\meyerov@eecs.berke

Abstract
Some progr
others fail 10 grow
gether. This paper
the factors that lead
large datasets, including over

590,000 projects

amming languages bec
beyond their

to language

we report several promin

adoption follows a powet law;
nt for most language use

accou
many langi

Analysis 0

Meyerovich
Princet

ome widely
niche or disappe

uses survey me
200,00
tracked by Ohloh,

1,000-13,000 programmers.
ent findings- Firs
a small number O

OOPSLA’13

{ Programming Language Adoption

Ariel Rabkin

on University

asrabk'm@cs.pr'mceton .edu

ley.edu

and whether 10 bet on a
the language adoption
scale.

died in a 1arge

ers in determining when
To date,

aid develop
new, exper'nnental language-
process has not been quantitatively stu
. Weuse 2 combination of sur-
sitory mining 0 investigate

thodology 0 identify o
We analyze
’ guage choice.
amming language

adoption.
0 SourceForge projectss
and multiple surveys of :
adoption process:
t, language What statistical propP
f Janguages larity? We begin (Section 3)
graInming mar- of language Use qcross many
bases. Second,
mportance® in adop-
and experience ton of language u
of project and developer ] :
We found ] a power law, which
i 4 in a small number
will still find

as perf ,
s will steadily

Third, developer

e overall pumber of lan-
independent of age.
es if their education

ilies. Finally, when

, developers priorl-
Which factors

-ve static types
making for Janguage

subjective motivations ©
projects. Know

guages for specific
velopers helps language designers

their perceived needs.
Through multiple we saw that deve
~ infl ' - open source Jibraries as the dominant factor in choosing
sramming languages- gocial factors not tied 0 intrinsic 1an-
L aviefing ~ersonal Of team experience




Importance of different factors when picking a language:

Open source libs. (M)
Extending existing code (E)
Already used in group (E)
Personal familiarity (E)
Team familiarity (E)

Performance (M)
Portability/platform (E)

Development speed (M)
Tools (M)

Safety/correctness (I) |
Potential team famil. (E)
Particular language feature (I)

Commercial libs. (M) | 1-100 employees
Simplicity (I) " m— | |HIl 101+ employees

10 20 30 40 50 60 70

Percent of respondents describing aspect as
medium or strong importance




E:r;pirical Analysis of
gramming Language Adoptio
I

OOPSLA’13

Empiri

Leo A. Meyerovich
UC Berkeley * Princeton University
\meyerov@eecs.berke\ey.edu asrabk'm@cs.pr'mceton .edu

nd whether 10 beton 2
age adoption

e scale.
a comb'mation of sur-
g to investigate
e.

ome widely popular while
disappearl alto- :

identify : .

an itory mumn

] language choic

0 SourceForge projectss
surveys of :
f
i Janguage POPY”

with an empirical analysis

S.
prominent findings. First, language
Jarity
open SOUrce projects. Such
tories 1anguages

T h rou g h m -
ultiple
value o surveys, we
pen so : N saw that
fa Cto r T . rce |' I b ra Il eS a S t h .d eve lo p e rS adoption follows a powet Jaw; a small number of languages
I n C h O O S i n e d O m | n account for most language use, but the pmgraxnm'mg mar- of language use
fa Ct g p ro g ra m . a n t ket supports many languages wi user bases. Second, a macro-scale analysis reveals what trajec
O rS n Ot t. d - m I n g l_a n intrinsic features have only secon ] in adop- tend to follow. Our analysis overall distribu-
I e tO | n t r " . g u age S . S O C 1 tion. Open source libraries, existing code, ] ton of language use, ' ] d on the kind
INSIC la N g ua Id I- strongly influence cting 2 f of project and developer
g e fe at ures a project. Language featul We found that popul
? and simple semantics do not. Third, ' i
learn and forget languages, e overall qumber of 1an- of languages ges will
elopers are famili ] endent of age- q user base- The popular languages are used across 2 vari-
g if their education ety of application domains while less popular ones tend 10
be used for niche _Even in niche domains, popular
ally used.

guages dev
aried 1language
qre still more typic
er decision-

such as existi
X1stin
g personal or team experie
nce,
Develope? Sdeadr'?f);:er\it language families. Finally, when
~developers priori- languages
. influence develop
examines the

exposed them 1O
-ve static types
i n? Section 4
when picking lan-

also rate highly.
- al tes former rather cing
] jects. g wha ers to de-

surveys,

as the domin
not tied tO intrinsic lan-

experience,

d others fail. Un- _
step towards en- Through multiple
open source libraries

. fAyence 1S out-
sramming languages- gocial factors
L aviefing ~ersonal Of team




E m pi ri Cal An a lySi S Of We emphasize four results from the data:
PrO g ra m m i n g L a n gu age Ad o pti 0 n 1. Open source libraries. Open source libraries are the

most influential factor for language choice overall and the
most influential factor for commercial projects at small
companies. They are an important factor, but not the most
important factor, at large companies. (Fro m

. Social Factors outweigh Intrinsics. Existing code or ex- the

pertise with the language are four of the top five factors

for adoption. In contrast, intrinsic factors, such as a lan- paper)
guage’s simplicity or safety, rank low. Implementation at-

tributes, like performance and tool quality, have both in-

trinsic and extrinsic components. (Some languages lend
themselves more easily than others to a high-performance
implementation.) These mixed attributes vary in impor-

tance.

. Domain specialization. Libraries, developer experience,

. and legacy code are all important in language selection.
Th rous h multi pl‘e SUIVEYS, WE Saw that developers These factors are often associated with particular appli-

value open source libraries as the dominant cation domains. Thus, the developer emphasis on these

factor in choosing programming languages. Social attributes helps explain the result in Section 3.2 that less-

factors not tied to intrinsic language features, popular languages are more niche-specific.

such as existi ng perso nal or team expe rien ce, : Comp&.lny. size matters. Employees at larger companies
. place significantly more value on legacy code and knowl-

also rate h |gh ly edge than do employees at small companies.




So you might say...

A open source project
tyont
+is’;

its Community.




So you might say...

A open source project
ty ot
+is’;

its Community.




What do
professional users
care about most?

Software that is reliable
and well maintained

Software that has an
active community using
and supporting It

Software that Is secure

Software with
maintainers who
provide timely bug fixes
and security releases

Professional users want an active community!

TIDELIF™

Most important factors when evaluating open source libraries
550 respondents

()]
o

®)
-
=
©
—
)
®)
©
—
)
>
<

Developer
support/
consulting
available

Active
community

Reliability and
maintenance

Popularity Timely new
feature

releases

Security Timely bug
fixes and
security

releases

Licensing
and IP
assurances



OPEN SOURCE SURVEYS: 2018 Tidelift Professional Open Source Survey
Professional users want an active community!

TIDELIF™

aluating open source libraries

QIVEICRUEIEREE])
active community using
and supporting It

Software that Is secure
Software with

2 2 Reliability and Active Security Timely bug Popularity Licensing Timely new Developer
Mal n.tal n.erS WhO maintenance community fixes and and IP feature support /
pr0V|de Tl mel_y bug ﬁxeS security assurances releases consulting

- | ilabl
and security releases releases available



What does this all mean?

TAKEAWAY:
Community & Ecosystem are among the most important factors to
an open source project’s success.

To stay alive, there should be a relentless focus on growing the
community and ecosystem! And that is hard work.




Let’'s wrap

it up




Things that are changing fast:
& that more people should be aware of

We saw 3 areas...

How we
build

What SWEs should
software

What we actually know, how much

do nowadays when experience they
we sit down to have, and who

build an app. they are.




Things that are changing fast:
& that more people should be aware of
We saw 3 areas...

How we

build

What SWEs should
software

know, how much
experience they
have, and who
they are.

What we actually
do nowadays when
we sit down to
build an app. j
TAKEAWAY:

We largely glue together open
source components, now
(We didn’t do this as much, not

even like 3 years ago.)




Things that are changing fast:
& that more people should be aware of
We saw 3 areas...

How we

build

What SWEs should
software

know, how much
experience they
have, and who

What we actually
do nowadays when
we sit down to

build an app.j they are.
TAKEAWAY:
We largely glue together open TAKEAWAY:
source components, now There remain sustainability
(We didn’t do this as much, not issues in 0SS that we should

even like 3 years ago.) be more cognizant of.



Things that are changing fast:
& that more people should be aware of
We saw 3 areas...

How we

build

What SWEs should
software

know, how much
experience they
have, and who

What we actually
do nowadays when
we sit down to

build an app.j they are.
TAKEAWAY: TAKEAWAY:
We largely glue together open TAKEAWAY: Most develo er; Jre
source components, now There remain sustainability extreme nem?comers
(We didn’t do this as much, not issues in 0SS that we should ‘

even like 3 years ago.) be more cognizant of. We need to adapt to this.



What does this all mean?

* We're getting a lot of newcomers.
* Those newcomers don’t all have fancy CS degrees.

- But maybe they don’t need one?
- Frameworks are king!
- Applications now are only 20% business logic (in one estimate)

* We're getting a lot of newcomers.
- We're actually getting good at reuse nowadays.
- The pieces that we (&newcomers) are reusing are largely open source

- Corporate subsidy is helping open source a lot (49%) but 62% is self-
funded/not funded

* We're getting a lot of newcomers.



It's all related

Applications are becoming
a majority open source
components. Frameworks,
and gluing together OS
~components.

We're getting and will keep
getting a lot of newcomers
across our industry

SS sustainability woes
No/ Rl



It's all related

Applications are becoming
a majority open source
components. Frameworks,
and gluing together OS
~components.

K_ This Is making It
easler for anyone to

build applications!

We're getting and will keep
getting a lot of newcomers
across our industry

Newcomers depenc
on OSS, and on 1t
belng easy to use

N—>

SS sustainability woes
No/ Rl



What does this all mean?

As managers...

Your engineers are going to need to be good mentors. Put a
greater emphasis on mentorship sooner than later. Find ways to
allow your engineers to give back to the OSS you depend on.

As practicing engineers...

Mentorship is a thing you should drop everything and focus on
getting better at. Now.

As educators...

Maybe everyone doesn’'t need a CS degree. Maybe we have to
fisure out ways for people more quickly and affordably learn
enough to become an application developer. Maybe this is OK.



@ _ HoTT Girl Summer
, Follow '
L.-'o‘ y  @vbhvsgr

pretty cool how open source successfully co- It's also not
opted the free software movement to instead enough to

be about making it as easy as possible for throw money
corporations to extract value from the unpaid at a project.
labour of programmers You actually
4:53 PM - 17 Aug 2019 need to

245 Retweets 922 Likes @ O e @ @ @ : @ Q‘, inveSt in .itS
community.




A good resource to start...

Developers mentoring
other developers: practices
I've seen work well

by Gergely Orosz

Home

About How does mentoring work? I asked this question ten years into my

My Reading List software engineering career when I joined Uber. Until then, I've never
Popular Articles received or done mentoring, or at least never put this label on any
Talks

activity I've done before.
Newsletter

Work with Me

Uber, however, had an official mentoring program. Almost every

RSS Feed
W twitter engineer I met had a mentor. Mentorship is an expectation for senior
M linkedin and above engineers, it being listed in our engineering competencies.

Since working here, I've been mentored, been a mentor, and have

w= Subscribe via email

httpS: u 3\ Subscribe in a reader

blog.p ragmatlcenglneer.coml Mentorship has been the best things that's sped up my growth and

develo pers-mentoring-other- others engineers around me. This post discusses mentorship practices
develo pers that work well engineer-to-engineer. The practices come from my

observed engineers around me grow via mentorship.

own experience, observations I've made people mentoring each other


https://blog.pragmaticengineer.com/developers-mentoring-other-developers
https://blog.pragmaticengineer.com/developers-mentoring-other-developers
https://blog.pragmaticengineer.com/developers-mentoring-other-developers
https://blog.pragmaticengineer.com/developers-mentoring-other-developers

A good resource to start...

_ Developers mentoring
Q other developers: practices

I've seen work well

by Gergely Orosz

Mentoring that we already do:
- Onboarding

- Informal mentorship (e.g., code reviews)

Formal mentorship is more effort, but provides more opportunities

for growth. This kind of mentorship is rare!

So far, only: structured at (typically) large tech companies, or within online
communities (e.g., CodingCoach)

https://blog.pragmaticengineer.com/developers-mentoring-other-developers



https://blog.pragmaticengineer.com/developers-mentoring-other-developers

A good resource to start...

Developers mentoring
Q other developers: practices

I've seen work well

by Gergely Orosz

Mentoring that we alreads
- Onboarding

- Informal mentorship |

Formal mentorship is more effort, but provides more opportunities
for growth. This kind of mentorship is rare!


https://blog.pragmaticengineer.com/developers-mentoring-other-developers

Questions?

Slides posted at:

https://speakerdeck.com/heathermiller/open-source-numbers-everybody-should-know-bobkonf



