VAT fdB o~ Bl
{ S AN C

February 2020
BOB Conference, Berlin

The Essence
of
Programming

INNOQ




Ludvig Sundstrém

Consultant
INNOQ Deutschland GmbH

ludvig.sundstroem@innog.com



My Agenda

® Structure in problem solving



My Agenda

® Structure in problem solving

® Using function composition



My Agenda

® Structure in problem solving
® Using function composition

® |Learning about categories



My Agenda

e Structure in problem solving
® Using function composition

® |Learning about categories



Stockholm, Sweden







* Haskell



* Haskell
e Clojure



° Haskell
e Clojure
® Erlang



Haskell
Clojure
Erlang
Scala



Haskell
Clojure
Erlang
Scala
etc.









/

AQAQAQAQAQDAOADADOAOANONONONC







i

=M\



[0]






Avoid!

® Quick fixes



Avoid!

® Quick fixes

® Unnecessary layers of technology



Avoid!

* Quick fixes
® Unnecessary layers of technology
® Misunderstanding the problem itself



The Problem of Solving the
Problem

"How to change and modify parts of a system without making the system as
a whole more complicated”



Today



I'll tackle the problem of the problem by explaining why ...



Why
Functional Programming
Matters

John Hughes
The University, Glasgow



FAQ

e |f functional programming matters ...



FAQ

e |f functional programming matters ...

° ..Why is the functional fan-club so small? [2]



FAQ: Answers

* We are technical people



FAQ: Answers

* We are technical people
* \We have technical discussions



FAQ: Answers

* We are technical people
* \We have technical discussions

* We learn to say "it depends”



FAQ: Answers

* We are technical people
* \We have technical discussions

We learn to say "it depends”

And that software engineering is about trade-offs



FAQ: Answers

* We are technical people
* \We have technical discussions

We learn to say "it depends”

And that software engineering is about trade-offs

° But most of all to have faith in what is already working



“Faith triumphs over science [in programming]”
- Philip Waldler



Instead of ...

® Having tunnel vision



Instead of ...

® Having tunnel vision
e Justifying what we already know



Instead of ...

® Having tunnel vision
e Justifying what we already know
® Getting lost in technical discussions



We should ...

* Have an open mind



We should ...

* Have an open mind

e Justify science, logic



We should ...

* Have an open mind
e Justify science, logic

e Start with the fundamentals of problem solving



Only then can we lift ourselves over the everyday programming grind!



Why FP?



Why FP?

® Functional programming does not only matter



Why FP?

® Functional programming does not only matter

® |tis universal! (direct correspondence with logic) [2]



Why FP?

® Functional programming does not only matter
® |tis universal! (direct correspondence with logic) [2]

e — Lets us talk about the structure of problem solving



Why FP?

® Functional programming does not only matter
® |tis universal! (direct correspondence with logic) [2]
e — Lets us talk about the structure of problem solving

e — Lets us focus on the essence of programming



Why FP?

® Functional programming does not only matter
® |tis universal! (direct correspondence with logic) [2]
* — Lets us talk about the structure of problem solving

¢ — Lets us focus on the essence of programming



The Fundamentals of Problem
Solving



Nick
Zorchenhimer

Found this in production today. | need
a drink.

CompareBoolean orig, bool wal)

AreBooleansEqual(orig, val);

1 AreBooleansEqual(bool orig, bool w

12:54 AM - 31 May 19 -

2,519 Retweets 7,054 Likes

Q (o




We do our best to create modular, losely coupled, composable abstractions






[ ]
W
e
p
r
o
g
r
a
m
in
o
rd
e
r
t
o
sol
v
e
p
r
o
b
le
m
s
(@)
rl
Y
?



* We program in order to solve problems (Orly? &)

® Then how do we solve problems?



CS: 101



CS: 101

Divide and Conquer



* Elegant code = Code that is easy to understand



* Elegant code = Code that is easy to understand
* Elegant code = Code broken up into just big enough pieces



¢ Elegant code = Code that is easy to understand

® Elegant code = Code broken up into just big enough pieces (by divide
and conquer)



CS: 101

Divide and Conquer



A computer program is ...

® A solution to a problem



A computer program is ...

® A solution to a problem

® A solution to many smaller problems



A computer program is ...

® A solution to a problem
® A solution to many smaller problems

o Complexity, split up into pieces



A computer program is ...

A solution to a problem

A solution to many smaller problems

Complexity, split up into pieces

Information flowing in a structure



A computer program is ...

A solution to a problem

A solution to many smaller problems

Complexity, split up into pieces

Information flowing in a structure (by divide and conquer)



How do we build information flow?



Enter the function






° \We'd like to use the mathematical model of functions



° \We'd like to use the mathematical model of functions

® Butin programming, we cannot have mathematical functions



* We'd like to use the mathematical model of functions
® Butin programming, we cannot have mathematical functions

* However, we can get close enough @



We'd like to use the mathematical model of functions
But in programming, we cannot have mathematical functions
However, we can get close enough @

So let's think about our programs as a collection of pure functions ...



We'd like to use the mathematical model of functions

But in programming, we cannot have mathematical functions
However, we can get close enough @

So let's think about our programs as a collection of pure functions ...
...composed together in a certain structure



We'd like to use the mathematical model of functions

But in programming, we cannot have mathematical functions
However, we can get close enough @

So let's think about our programs as a collection of pure functions ...
...composed together in a certain structure (by divide and conquer)



Divide and Conquer — Structure



Divide and Conquer = Structure = Function Composition



Divide and Conquer = Structure =
Function Composition = The Essence of Programming!



Now show me how to study the essence of programming!



Category Theory
(without most of the theory)



Design P.lﬂcmb




Category Theory

® |s the science of patterns



Category Theory

® |s the science of patterns
® |s the study of composition



Category Theory

® |s the science of patterns
® |s the study of composition
® |s a language that abstracts structure across different fields



Category Theory

Is the science of patterns

Is the study of composition

Is a language that abstracts structure across different fields

Applies well to programming ...



m m m m




Category Theory

Is the study of composition

Is the science of patterns

Is a language that abstracts structure across different fields

Applies well to programming ...
® ..because programming is all about structure



Ok, show me what a category is.



ed

eb

eC


















id_a e

id_bde b

id_cSe



id_a

o Xe

id bee b

id_cSe






® That's it.



* That's it.
* CT leaves it to us to discover the meaning behind this simple structure



Then show me how to define a category with some meaning!



How to define a category

1. Say what the objects are



How to define a category

1. Say what the objects are
2. Say what the arrows are



How to define a category

1. Say what the objects are
2. Say what the arrows are
3. Say what the identities are



How to define a category

1. Say what the objects are

2. Say what the arrows are

3. Say what the identities are

4, Say how the arrows compose



Category M



Category M

(&

o %
X

Obj(M) = {x}



Category M

(&

o %
X

Obj(M) = {x}
Hom(M) = N



Category M

(&

o %
X

Obj(M) = {x} id x=0
Hom(M) = N



Category M

(&

o %
X

Obj(M) = {x}  idx=0
Hom(M) = |\| composition = (+)



Category M

Composition: For any two arrows n and m,
there exists a composite arrow (n + m)



Category M

Composition: For any two arrows n and m,
there exists a composite arrow (n + m)

Identity: Any arrow can be composed with identity (n + O)



Category M

Composition: For any two arrows n and m,
there exists a composite arrow (n + m)
Identity: Any arrow can be composed with identity (n + O)

Associativity: Composing arrows (i + j) + k is the same as
composing i+ (j + k)



Category M

Composition: For any two arrows n and m,
there exists a composite arrow (n + m)
Identity: Any arrow can be composed with identity (n + O)

Associativity: Composing arrows (i + j) + k is the same as

composing i+ (j + k)
All logic is encoded in the composition



Programmers Category



® Programmers talk in data ...



® Programmers talk in data ...
e ..and give the data types



® Programmers talk in data ...
e ..and give the data types
® They spend their days transforming it with functions ...



Programmers talk in data ...

...and give the data types

They spend their days transforming it with functions ...
...and compose those functions in order to D.RY



The Category of Types and
Functions



The Category of Types and
Functions

1. Objects — Types



The Category of Types and
Functions

1. Objects — Types
2. Arrows — Functions



The Category of Types and
Functions

1. Objects — Types
2. Arrows — Functions

3. Composition — Function composition



The Category of Types and
Functions

1. Objects — Types
2. Arrows — Functions

3. Composition — Function composition

A tool to study essence of programming!



length even

7N

¢ String oInt eBool

even . length



length even

s String #lnt #Bool

even . length






t "a\;]l






Ob(Cat) = categories
Hom(Cat) = functors



—m

~ Vorsich

Funktor

.2m Abstand halten‘




The Functor

® |s a mapping between categories



The Functor

® |s a mapping between categories

* Maps objects into objects and arrows into arrows ...



The Functor

® |s a mapping between categories
* Maps objects into objects and arrows into arrows ...

e ..Preserving structure! (or meaning)



<d href="bar.com" /> <d href="baz.de" />

T NN

37 ' > L 2
foo.com bar.com baz.de




<d href="bar.com" /:- <d href="baz.de" /:-

'FDO com bqr.com baz. de

connect

Server A Server B



<d href="bar.com" /> <d href="baz.de" />

T NN,

9 ® 9 ®
bar.com baz.d




<d href="bar.com" /> <d href="baz.de" />

T N,

9 ® 9 ®
bar.com baz.d




<d href="bar.com" /> <d href="baz.de" />

T NN,

*9 ® 9 ®
bar.com baz.d




<d href="bar.com" /> <d href="baz.de" />

Server A Server B



Functors in Programming



oList String eListInt e List Bool

length even

¢ String °Int eBool

even . length



>eoList String eListInt ¢ List Bool

length even

¢ String °Int eBool

even . length



map length  map even

>eoList String eListInt ¢ List Bool

map even . length

length even

¢ String °Int eBool

even . length



A Functorin...

e Category theory: Mapping between categories



A Functorin...

e Category theory: Mapping between categories

®* Programming: Way to construct a richer type from a simpler type (e.g.
Int -> List Int)



A Functorin...

e Category theory: Mapping between categories

®* Programming: Way to construct a richer type from a simpler type (e.g.
Int -> List Int)

How do we do this in practice?



Enter: fmap

® The programmatic way of of mapping between types and functions.



Enter: fmap

® The programmatic way of of mapping between types and functions.
e Lifting simpler types into richer types



Enter: fmap

® The programmatic way of of mapping between types and functions.
e Lifting simpler types into richer types
® Represented by the Functor class (by implementing fmap)



-- Functor interface

fmap :: Functor f => (a -> b) -> f a ->fb



-- Input 1: Function

NANNNANNNN

fmap :: Functor f => (a -=> b) -> f a ->f b



-- Input 2: Enriched type

NANAN

fmap :: Functor f => (a -=> b) -> f a ->f b



-- Output: Enriched type

NANN

fmap :: Functor f => (a -=> b) -> f a ->f b



-- Input 1: Function

NANNNANNNN

fmap :: Functor f => (a -> b) -> (f a -> f b)



-- Output: Enriched function

NANNANNNANNNNNAN

fmap :: Functor f => (a -> b) -> (f a -> f b)



(—\och
Qm/\—\—r/\:c
\/

fmap :: FunctorF => (a->b) ->(Fa->Fb)



ﬁ(—\och
<m/\_\f/\c
\/

fmap :: FunctorF => (a->b) ->(Fa->Fb)



oF a oFb oF ¢

S NN

[ Xe| ohb ecC

\/

fmap :: FunctorF => (a->b) ->(Fa->Fb)



map length  map even

>eoList String eListInt ¢ List Bool

map even . length

length even

¢ String °Int eBool

even . length



The Functorin...

e Category Theory: Represents new parts of categories



The Functorin...

e Category Theory: Represents new parts of categories

® Programming: Represents new computational contexts



The Functorin...

e Category Theory: Represents new parts of categories
» Retaining structure!

® Programming: Represents new computational contexts
> Retaining structure!



The Functorin...

e Category Theory: Represents new parts of categories
» Retaining structure!

® Programming: Represents new computational contexts
> Retaining structure!

— Lets us focus on original program structure in a new context



Example Contexts



Example Contexts

e List: Where computations may have multiple return values



Example Contexts

e List: Where computations may have multiple return values

°* Maybe (Optional): Where failures might occur



Example Contexts

e List: Where computations may have multiple return values
°* Maybe (Optional): Where failures might occur
® |O: Where side effects can happen



Example Contexts

e List: Where computations may have multiple return values
°* Maybe (Optional): Where failures might occur
® |O: Where side effects can happen

— Use the functor to abstract over the context!



Now show me how to make a type a functor!



-- How to make List a functor

instance Functor [] where
fmap f xs = map f xs



-- How to make Maybe a functor

instance Functor Maybe where
fmap f (Just x) = Just (f x)
fmap f Nothing = Nothing



-- How to make IO a functor
instance Functor I0 where
fmap f action = do
X <= action
return (f x)



List Implements fmap!

prompt> fmap length ["YO", "YOO", "Y000"]
[2,3,4]

prompt> fmap even [1..10]
[False,True,False,True,False,True,False,True,False,True]

prompt> fmap (even . Length) ["ah", "aha", "ehhhhh"]
[True,False,True]




Maybe Implements fmap!

ghci> fmap even Nothing

Nothing

ghci> fmap length (Just "Y000")

Just 4

ghci> fmap (even . Length) (Just "Y000")
(Just True)




|O implements fmap!

Get a string from the command line...

prompt> fmap length getLineér————”’///

HELLOWORLD

10 ... and an integer

prompt> fmap even getInte————J
33

False
prompt> fmap (even . length) getLine
HELLO
False




Y



v

Y



B Instances
@ Functor
Functor
@ Functor
Functor
Functor
Functor
Functor

Functor

Functor
Functor
Functor
Functor
Functor
Functor

Functor
Functor

Functor
Functor
@ Functor
Functor
Functor
@ Functor

Functor

[1

Maybe

10

Par1
NonEmpty
ReadP
ReadPrec
Down
Product
Sum
Dual
Last
First
STM
Handler
Identity
Ziplist
ArgDescr
OptDescr
Argorder
Option
Last

First

| # source
‘ # Source
| # Source
| # Source
| # Source
| # source
‘ # Source
| # Source
| # source
‘ # Source
| # Source
‘ # Source
| # Source
| # source
‘ # Source
| # Source
| # source
| # Source
| # source
‘ # Source
| # Source

‘ # Source

‘ # Source

Since.
Since.
Since.
Since.
Since.

Since.

Since:

Since.

Since:
Since:
Since:
Since:
Since:
Since:
Since:

Since:

Since.
Since.
Since.
Since.
Since.
Since.

Since.

0 2.1
2.1
2.1
:4.9.0.0
0 4.9.0.0
0 2.1

21
:4.11.0.0
4.8.0.0
4.8.0.0
4.8.0.0
4.8.0.0
4.8.0.0
4.3.0.0
4.6.0.0
4.8.0.0
0 2.1

0 4.6.0.0
:4.6.0.0
:4.6.0.0
0 4.9.0.0
:4.9.0.0

:4.9.0.0

Functor
@ Functor
Functor
& Functor
Functor
Functor
Functor
Functor
Functor

Arrow a

Functor
Functor
Functor
Functor
Functor
Functor
@ Functor
Functor
@ Functor
Functor
Functor

@ Functor

Max | # source  Since:
Min | # source  Since:
Complex | #source  Since:
(Either a) ‘ # Source  Since:
(V1 :: Type -> Type) ‘# Source  Since:
(U1 :: Type -> Type) | #Source ~ Since:
() a) ‘ # Source  Since:
(ST s) | # source  Since:
(Proxy :: Type -> Type) ‘# Source Since:
=> Functor (ArrowMonad a) ‘# Source Since:
Monad m => Functor (WrappedMonad m) ‘# Source Since:
(ST s) | # Source  Since:
(Arg a) | # Source  Since:
f => Functor (Recl f) ‘#Smu'(e Since:
(URec Char :: Type -> Type) ‘# Source Since:
(URec Double :: Type -> Type) ‘# Source  Since:
(URec Float :: Type -> Type) | # Source  Since:
(URec Int :: Type -> Type) ‘# Source Since:
(URec Word :: Type -> Type) ‘# Source Since:
(URec (Ptr ()) :: Type -> Type) ‘# Source Since:
f => Functor (Alt f) ‘# Source  Since:
f => Functor (Ap f) ‘# Source  Since:
(Const m :: Type -> Type) ‘# Source Since:

4.9.0.0
4.9.0.0
4.9.0.0
3.0
4.9.0.0
4.9.0.0
2.1

2.1
4.7.0.0
4.6.0.0
2.1

2.1
4.9.0.0
4.9.0.0
4.9.0.0
4.9.0.0
4.9.0.0
4.9.0.0
4.9.0.0
4.9.0.0
4.8.0.0
4.12.0.0
2.1

@ Arrow a => Functor (WrappedArrow a b) # Source Since: 2.1

|Synopsis




Thinking categorically gives us

® Structure for free



Thinking categorically gives us

® Structure for free

® Instant context switching



Thinking categorically gives us

® Structure for free

® Instant context switching
® In other words



Thinking categorically gives us

® Structure for free

® Instant context switching
® In other words
> Flexibility



Thinking categorically gives us

® Structure for free

® Instant context switching
® In other words

> Flexibility

> Code reuse



Thinking categorically gives us

® Structure for free

® Instant context switching
¢ |In other words

> Flexibility

> Code reuse

> Separation of concerns



Thinking categorically gives us

® Structure for free

® Instant context switching
¢ |In other words

Flexibility

Code reuse

Separation of concerns

>
>
>
> Modularity






[0]



® Thinking categorically will might not make webpack compile



® Thinking categorically will might not make webpack compile
° But It will:



® Thinking categorically will might not make webpack compile
° But It will:
> Help us expose structure



® Thinking categorically will might not make webpack compile
° But It will:

> Help us expose structure
» Give us a different view on context



® Thinking categorically will might not make webpack compile
° But It will:

> Help us expose structure
> Give us a different view on context
> Help us change and extend locally without complecting globally



® Thinking categorically will might not make webpack compile
° But It will:

> Help us expose structure
> Give us a different view on context
> Help us change and extend locally without complecting globally

The functor is just the beginning ...



Functor

/

Comonad

Applicative

Semigroup

|

Monoid | :

Category

Altemative | | Foldable | | Monad | Arrow -% AmowZero { AmowPlus
Traversable MonadFix | | MonadPlus | | AmowApply | | AmowChoice | | AmowLoop




A functor as a Type Class

* Extends the behavior of data



A functor as a Type Class

* Extends the behavior of data
» Not the data itself



A functor as a Type Class

¢ Extends the behavior of data
» Not the data itself
® |s part of a relation to other behaviors



A functor as a Type Class

® Extends the behavior of data
» Not the data itself

® |s part of a relation to other behaviors
» Not a part of a rigid type hierarchy



A functor as a Type Class

¢ Extends the behavior of data
» Not the data itself

® |s part of a relation to other behaviors
» Not a part of a rigid type hierarchy

® lts implementation is open



A functor as a Type Class

® Extends the behavior of data
» Not the data itself
® |s part of a relation to other behaviors
» Not a part of a rigid type hierarchy
® lts implementation is open
» Not bound to the class that implements the interface



A functor as a Type Class

Extends the behavior of data
» Not the data itself
Is part of a relation to other behaviors
» Not a part of a rigid type hierarchy
Its implementation is open
» Not bound to the class that implements the interface

Gives us information about a function without looking at its
implementation



A functor as a Type Class

Extends the behavior of data
» Not the data itself
Is part of a relation to other behaviors
» Not a part of a rigid type hierarchy
Its implementation is open
» Not bound to the class that implements the interface

Gives us information about a function without looking at its
implementation

» Does not require us learning each context independently



A functor as a Type Class

Extends the behavior of data
» Not the data itself
Is part of a relation to other behaviors
» Not a part of a rigid type hierarchy
Its implementation is open
» Not bound to the class that implements the interface

Gives us information about a function without looking at its
implementation

» Does not require us learning each context independently

— Blends out the details, focus on the interactions



Summary

* Fundamentally, we solve all problems the same way: splitting, solving,
recursing, composing



Summary

* Fundamentally, we solve all problems the same way: splitting, solving,
recursing, composing

® Structure emerges through composition



Summary

* Fundamentally, we solve all problems the same way: splitting, solving,
recursing, composing

® Structure emerges through composition

® Pure, math-inspired functions are the most natural tool to model
problem solving in computer programming



Summary

* Fundamentally, we solve all problems the same way: splitting, solving,
recursing, composing

® Structure emerges through composition

® Pure, math-inspired functions are the most natural tool to model
problem solving in computer programming

® Category theory lets us study composition ...



Summary

* Fundamentally, we solve all problems the same way: splitting, solving,
recursing, composing

® Structure emerges through composition

® Pure, math-inspired functions are the most natural tool to model
problem solving in computer programming

® Category theory lets us study composition ...

e ..and provides tools such as the functor that encourages us to focus on
interactions between things, not things themselves



Structurize, don't optimize @



Thank you!

Ludvig Sundstréom

ludvig.sundstroem@innog.com

\. +49 1516 1181270

’ @I5und

innoQ Deutschland GmbH

Krischerstr. 100
40789 Monheim a. Rh.
Germany

+49 2173 3366-0

Ohlaver Str. 43
10999 Berlin
Germany

Ludwigstr. 180E
63067 Offenbach
Germany

vuestions?

Kreuzstr. 16
80331 Munchen
Germany

/o WeWork
Hermannstrasse 13
20095 Hamburg
Germany

INNOQ

www.innog.com

innoQ Schweiz GmbH

Gewerbestr. 11 Albulastr. 55
CH-6330 Cham 8048 Zurich
Switzerland Switzerland

+4141743 0111



O : http://cdn.makeuseof.com/wp-content/uploads/2014/09/
stress-free-programming-frustration. jpg?x92042

1 :https:
//insights.stackoverflow.com/survey/2019#technology

2 s https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_
correspondence

3 ¢ https://en.wikipedia.org/wiki/Design_Patterns

4 3 https://golem.ph.utexas.edu/category/2012/01/
vorsicht_funktor.html


http://cdn.makeuseof.com/wp-content/uploads/2014/09/stress-free-programming-frustration.jpg?x92042
http://cdn.makeuseof.com/wp-content/uploads/2014/09/stress-free-programming-frustration.jpg?x92042
https://insights.stackoverflow.com/survey/2019#technology
https://insights.stackoverflow.com/survey/2019#technology
https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
https://en.wikipedia.org/wiki/Design_Patterns
https://golem.ph.utexas.edu/category/2012/01/vorsicht_funktor.html
https://golem.ph.utexas.edu/category/2012/01/vorsicht_funktor.html

Laws

Associativity ina category: h.g.f=(h.g).f=h.(g.f)
Identity in a category (forf:a->b): f.id_a=f id_b.f="f

® Functor retains structure under composition:
ifh=g.fthenFh=Fg.Ff

® Functor retains structure under identity: F id_a = id_{F a}



Curry-Howard Isomorphism

* Void < False

° () < True

® Product Types < OR
® Sum Types <= AND
* A->B < IfAthenB



Notes on functor as a typeclass

Interfaces methods are always associated with an object instance. In other
words, there is always an implied 'this' parameter that is the object on
which the method is called. All inputs to a type class function are explicit.



