
@nicolas_frankel

A gentle introduction to Stream
Processing

Nicolas Fränkel

@nicolas_frankel

Me, myself and I

§ 18 years in technical roles:
• Developer, team lead, architect, …

§ Developer Advocate

@nicolas_frankel

Hazelcast

HAZELCAST IMDG is an operational,
in-memory, distributed computing
platform that manages data using
in-memory storage and performs
parallel execution for breakthrough
application speed and scale.

HAZELCAST JET is the ultra fast,
application embeddable, 3rd
generation stream processing
engine for low latency batch and
stream processing.

@nicolas_frankel

Schedule

§ Why streaming?

§ Streaming approaches

§ Hazelcast Jet
§ Open Data

§ General Transit Feed Specification
§ The demo

@nicolas_frankel

In a time before our time…

Data was neatly stored in SQL databases

@nicolas_frankel

The need for Extract Transform Load

§ Analytics
• Supermarket sales in the last hour?

§ Reporting
• Banking account annual closing

@nicolas_frankel

Writes vs. reads

§ Normalized vs. denormalized

§ Correct vs. fast

@nicolas_frankel

What SQL implies

§ Normal forms

§ Joins

§ Constraints

@nicolas_frankel

The need for ETL

§ Different actors

§ With different needs

§ Using the same database?

@nicolas_frankel

The batch model

1. Extract
2. Transform

3. Load

@nicolas_frankel

Batches are everywhere!

@nicolas_frankel

Properties of batches

§ Scheduled at regular intervals
• Daily
• Weekly
• Monthly
• Yearly
• etc.

§ Run in a specific amount of time

@nicolas_frankel

Oops

§ When the execution time overlaps the
next execution schedule

§ When the space taken by the data
exceeds the storage capacity

§ When the batch fails mid-execution
§ etc.

@nicolas_frankel

Chunking!

§ Keep a cursor
• And only manage “chunks” of data

§ What about new data coming in?

@nicolas_frankel

Big data!

§ Parallelize everything
• Map - Reduce
• Hadoop

§ NoSQL
• Schema on Read vs. Schema on Write

@nicolas_frankel

Event

“In programming and software design, an event is an action or
occurrence recognized by software, often originating
asynchronously from the external environment, that may be
handled by the software. Computer events can be generated or
triggered by the system, by the user, or in other ways.”

-- Wikipedia

@nicolas_frankel

Make everything event-based!

@nicolas_frankel

Benefits

§ Memory-friendly

§ Easily processed

§ Pull vs. push
• Very close to real-time
• Keeps derived data in-sync

@nicolas_frankel

From finite datasets to infinite

@nicolas_frankel

Stateful streams

§ Aggregation

§ Windowing

@nicolas_frankel

Streaming is “smart” ETL

Processing

Ingest
In-Memory

Operational Storage

Combine
Join, Enrich,

Group, Aggregate

Stream
Windowing, Event-

Time
Processing

Compute
Distributed and

Parallel
Computation

Transform
Filter, Clean,

Convert

Publish
In-Memory,
Subscriber

Notifications

@nicolas_frankel

Analytics and Decision Making

§ Real-time dashboards

§ Stats

§ Predictions
• Push stream through ML model

§ Complex-Event-Processing

@nicolas_frankel

Persistent event-storage systems

§ Apache Kafka

§ Apache Pulsar

@nicolas_frankel

Apache Kafka

§ Distributed

§ On-disk storage

§ Messages sent and read from a topic
§ Consumer can keep track of the offset

@nicolas_frankel

Some in-memory stream processing engines

§ On-premise
• Apache Flink
• Hazelcast Jet

§ Cloud-based
• Amazon Kinesis
• Google Dataflow

§ Apache Beam
• Abstraction over some of the above

@nicolas_frankel

Hazelcast Jet

§ Apache 2 Open Source

§ Leverages Hazelcast IMDG

§ Unified batch/streaming API

§ (Hazelcast Jet Enterprise)

@nicolas_frankel

Pipeline Job

§ Declarative code that
defines and links sources,
transforms, and sinks

§ Platform-specific SDK

§ Client submits pipeline to
the SPE

§ Running instance of pipeline
in SPE

§ SPE executes the pipeline
• Code execution

• Data routing

• Flow control

@nicolas_frankel

Deployment modes

// Create new cluster member

JetInstance jet = Jet.newJetInstance();

// Connect to running cluster

JetInstance jet = Jet.newJetClient();

Client/ServerEmbedded

Java API

Application

Java API

Application

Java API

Application
Client API

Application

Client API

Application

Client API

Application

Client API

Application

@nicolas_frankel

Hazelcast Jet

@nicolas_frankel

Open Data

« Open data is the idea that some data
should be freely available to everyone to
use and republish as they wish, without
restrictions from copyright, patents or
other mechanisms of control. »

--https://en.wikipedia.org/wiki/Open_data

@nicolas_frankel

Some Open Data initiatives

§ France:
• https://www.data.gouv.fr/fr/

§ Switzerland:
• https://opendata.swiss/en/

§ European Union:
• https://data.europa.eu/euodp/en/data/

@nicolas_frankel

Challenges

1. Access

2. Format

3. Standard
4. Data correctness

@nicolas_frankel

Access

§ Access data interactively through a web-
service

§ Download a file

@nicolas_frankel

Format

In general, Open Data means Open
Format

§ PDF
§ CSV

§ XML
§ JSON

§ etc.

@nicolas_frankel

Standard

§ Let’s pretend the format is XML
• Which grammar is used?

§ A shared standard is required
• Congruent to a domain

@nicolas_frankel

Data correctness

"32.TA.66-43","16:20:00","16:20:00","8504304"
"32.TA.66-44","24:53:00","24:53:00","8500100"
"32.TA.66-44","25:00:00","25:00:00","8500162"
"32.TA.66-44","25:02:00","25:02:00","8500170"
"32.TA.66-45","23:32:00","23:32:00","8500170"

@nicolas_frankel

A standard for Public Transport

§ General Transit Feed Specification (GTFS)
§ ” […] defines a common format for public transportation

schedules and associated geographic information. GTFS feeds
let public transit agencies publish their transit data and developers
write applications that consume that data in an interoperable way.”

§ Based on two kinds of data:
• “Static” e.g. stops
• Dynamic e.g. position

@nicolas_frankel

GTFS static model

Filename Required Defines

agency.txt Required Transit agencies with service represented in this dataset.

stops.txt Required Stops where vehicles pick up or drop off riders. Also defines stations and station
entrances.

routes.txt Required Transit routes. A route is a group of trips that are displayed to riders as a single service.

trips.txt Required Trips for each route. A trip is a sequence of two or more stops that occur during a
specific time period.

stop_times.txt Required Times that a vehicle arrives at and departs from stops for each trip.

calendar.txt Conditionally required Service dates specified using a weekly schedule with start and end dates. This file is
required unless all dates of service are defined in calendar_dates.txt.

calendar_dates.txt Conditionally required Exceptions for the services defined in the calendar.txt. If calendar.txt is omitted, then
calendar_dates.txt is required and must contain all dates of service.

fare_attributes.txt Optional Fare information for a transit agency's routes.

@nicolas_frankel

GTFS static model

Filename Required Defines

fare_rules.txt Optional Rules to apply fares for itineraries.

shapes.txt Optional Rules for mapping vehicle travel paths, sometimes referred to as route alignments.

frequencies.txt Optional Headway (time between trips) for headway-based service or a compressed representation of fixed-schedule
service.

transfers.txt Optional Rules for making connections at transfer points between routes.

pathways.txt Optional Pathways linking together locations within stations.

levels.txt Optional Levels within stations.

feed_info.txt Optional Dataset metadata, including publisher, version, and expiration information.

translations.txt Optional Translated information of a transit agency.

attributions.txt Optional Specifies the attributions that are applied to the dataset.

@nicolas_frankel

GTFS dynamic model

@nicolas_frankel

A data provider

“511 is your phone and web source for Bay
Area traffic, transit, carpool, vanpool, and
bicycling information. It's FREE and
available whenever you need it – 24 hours
a day, 7 days a week – from anywhere in
the nine-county Bay Area”

-- https://511.org/open-data

@nicolas_frankel

The dynamic data pipeline

1. Source: web service
2. Split into trip updates
3. Enrich with trip data
4. Enrich with stop times data
5. Transform hours into timestamp
6. Enrich with location data
7. Sink: Hazelcast IMDG

@nicolas_frankel

Architecture overview

@nicolas_frankel

Talk is cheap, show me the code!

@nicolas_frankel

Recap

§ Streaming has a lot of benefits

§ Leverage available Data
• Open Data has a lot of untapped

potential

§ But you can get cool stuff done!

@nicolas_frankel

Thanks a lot!

§ https://blog.frankel.ch/

§ @nicolas_frankel

§ https://jet-start.sh/
§ https://bit.ly/jet-train

§ https://slack.hazelcast.com/

