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1. Teaser

Binary trees:

data Tree a � Tip a j Bin �Tree a� �Tree a�

with flattening to lists:

flatten1 :: Tree a ! �a�
flatten1 �Tip x� � �x�
flatten1 �Bin t u� � flatten1 t �� flatten1 u

Takes quadratic time, because of left-nested ��s.

How to do it in linear time?

And what does this have to do with abstract machines?

1

2 3

4



CPS etc 4

2. Factorial

fact1 :: Integer ! Integer
fact1 0 � 1
fact1 n � n� fact1 �n� 1�

Recursive.
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Continuation-passing style

Introduce continuation as accumulating parameter:

fact02 n k � k �fact1 n�

Then calculate:

fact2 :: Integer ! Integer
fact2 n � fact02 n id

fact02 :: Integer ! �Integer ! Integer�! Integer
fact02 0 k � k 1
fact02 n k � fact02 �n� 1� ��m! k �n�m��

Now tail-recursive, but higher-order.
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Defunctionalize

The continuations aren’t arbitrary Integer ! Integer functions:
always of the form id � �a�� � �b�� � � � � � �c��.
Data-refine this continuation to a list �a;b; : : : ; c�:

fact3 :: Integer ! Integer
fact3 n � fact03 n � �

fact03 :: Integer ! �Integer �! Integer
fact03 0 k � product k
fact03 n k � fact03 �n� 1� �k �� �n��

Tail-recursive, first order—but uses data structures.
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Associativity

Further data-refine �a;b; : : : ; c� to a� b � � � � � c.

fact4 :: Integer ! Integer
fact4 n � fact04 n 1

fact04 :: Integer ! Integer ! Integer
fact04 0 k � k
fact04 n k � fact04 �n� 1� �k � n�

Data refinement valid by associativity.

Familiar: tail-recursive, first-order, only scalar data.

(This last step wouldn’t work for “subtractorial”.)

n;k :�N ;1;

f inv: n > 0 ^ k � n! � N ! g
while n 6� 0 do

n;k :� n� 1;k � n

end

f k � N ! g
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3. Reverse

Similarly, naive quadratic-time reverse:

reverse1 :: �a�! �a�
reverse1 � � � � �
reverse1 �x : xs� � reverse1 xs �� �x�

CPS; defunctionalize; associativity:

reverse3 :: �a�! �a�
reverse3 xs � reverse03 xs � �

reverse03 :: �a�! �a�! �a�
reverse03 � � k � k
reverse03 �x : xs� k � reverse03 xs �x : k�
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4. Tree traversal

Binary trees:

data Tree a � Tip a j Bin �Tree a� �Tree a�

with flattening to lists:

flatten1 :: Tree a ! �a�
flatten1 �Tip x� � �x�
flatten1 �Bin t u� � flatten1 t �� flatten1 u

Not tail-recursive;
also quadratic time, because of left-nested ��s.
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CPS

Introduce continuation as accumulating parameter:

flatten02 t k � k �flatten1 t�

then calculate:

flatten2 :: Tree a ! �a�
flatten2 t � flatten02 t id

flatten02 :: Tree a ! ��a�! �a��! �a�
flatten02 �Tip x� k � k �x�
flatten02 �Bin t u� k � flatten02 t ��xs !

flatten02 u ��ys ! k �xs �� ys���

Tail-recursive, but higher-order, and still quadratic.
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CPS

Introduce continuation as accumulating parameter:

flatten02 t k � k �flatten1 t�

then calculate (NB visit right child before left):

flatten2 :: Tree a ! �a�
flatten2 t � flatten02 t id

flatten02 :: Tree a ! ��a�! �a��! �a�
flatten02 �Tip x� k � k �x�
flatten02 �Bin t u� k � flatten02 u ��ys !

flatten02 t ��xs ! k �xs �� ys���

Tail-recursive, but higher-order, and still quadratic.
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Defunctionalize

Three ways of constructing the continuations k:

id -- no free variables
�xs ! k �xs �� ys� -- free variables ys :: �a�;k
�ys ! flatten02 t ��xs ! k �xs �� ys�� -- free variables t :: Tree a;k

—always a sequence, elements either �a� or Tree a.

So introduce the following representation:

type FlattenCont4 a � �Either �a� �Tree a��

with abstraction function

flattenabs4 :: FlattenCont4 a ! ��a�! �a��
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Data refinement

Then data-refine flatten2 to:

flatten4 :: Tree a ! �a�
flatten4 t � flatten04 t � �

flatten04 :: Tree a ! FlattenCont4 a ! �a�
flatten04 �Tip x� k � flattenabs4 k �x�
flatten04 �Bin t u� k � flatten04 u �Right t : k�

flattenabs4 � � � id
flattenabs4 �Left ys : k� � �xs ! flattenabs4 k �xs �� ys�
flattenabs4 �Right t : k� � �ys ! flatten04 t �Left ys : k�
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Example

Let xsi � flatten1 ti for i � 1; : : : ;4.

While visiting subtree t2, continuation is

�Left xs3;Right t1;Left xs4�

Having obtained xs2 � flatten1 t2, result is

�flatten1 t1 �� �xs2 �� xs3���� xs4

By associativity of ��, irrelevant relative ordering of
Lefts (appended) and Rights (prepended):

flattenabs4 k � flattenabs4 �map Left �lefts k���
map Right �rights k��

t1

t3

t4

t2
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Associativity

flattenabs4 k � flattenabs4 �Left �concat �lefts k����
map Right �rights k���

by associativity of �� again, justifying another data refinement:

type FlattenCont5 a � ��a�; �Tree a�� -- ‘context’

flatten5 :: Tree a ! �a�
flatten5 t � flatten05 t �� �; � ��

flatten05 :: Tree a ! FlattenCont5 a ! �a�
flatten05 �Tip x� �ys; ts� � flattenabs5 �ys; ts� �x�
flatten05 �Bin t u� �ys; ts� � flatten05 u �ys; t : ts�

flattenabs5 �ys; � �� � �xs ! xs �� ys
flattenabs5 �ys; t : ts� � �ys0 ! flatten05 t �ys0 �� ys; ts� -- ys0 a singleton



CPS etc 15

Familiar

Yet another data refinement, combining
tree-in-focus and stack of trees into just a stack:

flatten6 :: Tree a ! �a�
flatten6 t � flatten06 �t � � �

flatten06 �Tip x : ts� ys � flatten06 ts �x : ys�
flatten06 �Bin t u : ts� ys � flatten06 �u : t : ts� ys
flatten06 � � ys � ys

—the tail-recursive, linear-time program you might have written.
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Zipper etc

Apply the same process to

id :: Tree a ! Tree a

yields defunctionalized continuations

�Either �Tree a� �Tree a��

which is Huet’s zipper. For

yields

which is McBride’s clowns and jokers.



CPS etc 16

Zipper etc

Apply the same process to

id :: Tree a ! Tree a

yields defunctionalized continuations

�Either �Tree a� �Tree a��

which is Huet’s zipper. For

treeMap :: �a ! b�! Tree a ! Tree b

yields

�Either �Tree b� �Tree a��

which is McBride’s clowns and jokers.
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5. Hutton’s Razor

data Expr � Lit Integer j Diff Expr Expr
expr � Diff �Diff �Lit 3� �Lit 4�� �Lit 5�

eval1 :: Expr ! Integer
eval1 �Lit n� � n
eval1 �Diff e e0� � eval1 e� eval1 e0 Diff

Diff Lit

Lit Lit

3 4

5
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CPS

type EvalCont2 � Integer ! Integer

eval2 :: Expr ! Integer
eval2 e � eval02 e id

eval02 :: Expr ! EvalCont2 ! Integer
eval02 �Lit n� k � k n
eval02 �Diff e e0� k � eval02 e ��m! eval02 e0 ��n! k �m� n���

Tail-recursive, but higher-order.
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Defunctionalize

type EvalCont3 � �Either Expr Integer �

eval3 :: Expr ! Integer
eval3 e � eval03 e � �

eval03 :: Expr ! EvalCont3 ! Integer
eval03 �Lit n� k � evalabs3 k n
eval03 �Diff e e0� k � eval03 e �Left e0 : k�

evalabs3 :: EvalCont3 ! �Integer ! Integer�
evalabs3 � � n � n
evalabs3 �Left e0 : k� m � eval03 e0 �Right m : k�
evalabs3 �Right m : k� n � evalabs3 k �m� n�

An interpreter, but not a compiler: stack contains expressions.
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Where does this compiler come from?

data Instr � PushI Integer j SubI
-- eg �PushI 3;PushI 4; SubI ;PushI 5; SubI �

compile4 :: Expr ! �Instr �
compile4 �Lit n� � �PushI n�
compile4 �Diff e e0� � compile4 e�� compile4 e0 �� �SubI �

exec4 :: �Instr �! �Integer �! �Integer �
exec4 p s � foldl step s p where

step ns �PushI n� � n : ns
step �n : m : ns� SubI � �m� n� : ns -- NB flipping!

eval4 :: Expr ! Integer
eval4 e � case exec4 �compile4 e� � � of �n�! n
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. . . without pulling rabbits from hats
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6. Generalized composition

Generalize composition to propagate multiple arguments:

br g f � �x1 : : : xr ! g �f x1 : : : xr�

fg

x1

...

xr

ie

b0 g f � g f
br�1 g f � �x ! br g f x

Deriving Target Code as a Representation 
of Continuation Semantics 
MITCHELL WAND 
Indiana University 

Reynolds' technique for deriving interpreters is extended to derive compilers from continuation 
semantics. The technique starts by eliminating h-variables from the semantic equations through the 
introduction of special-purpose combinators. The semantics of a program phrase may be represented 
by a term built from these combinators. Then associative and distributive laws are used to simplify 
the terms. Last, a machine is built to interpret the simplified terms as the functions they represent. 
The combinators reappear as the instructions of this machine. The technique is illustrated with three 
examples. 
Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and 
Theory--semantics; D.3.4 [Programming Languages]: Processors--code generation; compilers; 
F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages--denotational 
semantics; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Lo~c--lambda 
calculus and related systems 
General Terms: Languages, Theory 
Additional Key Words and Phrases: Continuations, combinators 

1. INTRODUCTION 
I n  th is  paper ,  we a t t ack  the  q u e s t i o n  of how a d e n o t a t i o n s ]  s e m a n t i c s  for a 
l anguage  is r e l a t ed  to a n  i m p l e m e n t a t i o n  of t h a t  language .  Typ ica l ly ,  one  con- 
s t ruc t s  the  s eman t i c s  of a t a rge t  m a c h i n e  a n d  of a ( su i tab ly  abs t rac t )  compi le r  
a n d  proves  a cong ruence  b e t w e e n  the  two d i f fe rent  s e m a n t i c s  [12]. 

Our  a p p r o a c h  is qu i te  different .  S t a r t i n g  wi th  a c o n t i n u a t i o n  s e m a n t i c s  for the  
source  language ,  we cons t ruc t ,  v ia  a series of t r a n s f o r m a t i o n s  a n d  r e p r e s e n t a t i o n  
decisions,  a t a rge t  m a c h i n e  a n d  a compiler .  A typ ica l  s e m a n t i c s  has  f u n c t i o n a l i t y  

P: P g m s  ---> [Inputs -* Outputs]. 

A c o m p i l e r / t a r g e t  mach ine ,  on  the  o the r  hand ,  uses  the  pa i r  of f unc t i ons  

C o m p i l e :  P g m s  --, Reps; 
M a c h i n e :  R eps --. [Inputs ---> Outputs] 

This material is based on work supported by the National Science Foundation under grant MCS79- 
04183. 
Author's address: Computer Science Department, Indiana University, Bloomington, IN 47405. 
Permission to copy without fee all or part of this material is granted provided that the copies are not 
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by permission of the Association 
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific 
permission. 
© 1982 ACM 0164-0925/82/0700-0496 $00.75 
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982, Pages 496-517. 
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Implementing generalized composition

Arities:

type family Arrow �as :: �Type�� �b :: Type� where

Arrow 0�� b � b
Arrow �a 0: as� b � a ! Arrow as b

eg

Arrow 0�Char;Bool� String � Char ! Bool ! String

Then we can define

b :: �b ! c�! Arrow as b ! Arrow as c

(roughly. . . )
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Installing

Recall:

eval2 e � eval02 e id
eval02 �Lit n� � �k ! k n
eval02 �Diff e e0� � �k ! eval02 e ��m! eval02 e0 ��n! k �m� n���
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Installing

Recall:

eval2 e � eval02 e halt
eval02 �Lit n� � ret n
eval02 �Diff e e0� � �k ! eval02 e ��m! eval02 e0 ��n! sub k m n��

where for later convenience we introduce:

halt � id
ret n � �k ! k n
sub � �k m n! k �m� n�



CPS etc 24

Installing

Recall:

eval2 e � eval02 e halt
eval02 �Lit n� � ret n
eval02 �Diff e e0� � �k ! eval02 e ��m! eval02 e0 ��n! sub k m n��

Then:

eval02 �Diff e e0�
� �� definition ��
�k ! eval02 e ��m! eval02 e0 ��n! sub m k n��
� �� since �k ! g �f k� is b1 g ��k ! f k� ��

b1 �eval02 e� ��k m! eval02 e0 ��n! sub k m n��
� �� since �k m! g �f k m� is b2 g ��k m! f k m� ��

b1 �eval02 e� �b2 �eval02 e0� sub�
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An equivalent evaluator

Rewrite the Diff case of eval02:

eval5 :: Expr ! Integer
eval5 e � eval05 e halt where

eval05 :: Expr ! �Integer ! Integer�! Integer
eval05 �Lit n� � ret n
eval05 �Diff e e0� � b1 �eval05 e� �b2 �eval05 e0� sub�
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Tree-shaped code

data ExprRep6 :: �Type�! Type where

Ret6 :: Integer ! ExprRep6
0��

Sub6 :: ExprRep6
0�Integer; Integer�

B1
6 :: ExprRep6

0��!
ExprRep6

0�Integer�! ExprRep6
0��

B2
6 :: ExprRep6

0��!
ExprRep6

0�Integer; Integer�! ExprRep6
0�Integer�

Type index denotes what extra values are needed to complete evaluation.
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Representation and interpretation

rep6 :: Expr ! ExprRep6
0��

rep6 �Lit n� � Ret6 n
rep6 �Diff e e0� � B1

6 �rep6 e� �B2
6 �rep6 e0� Sub6�

abs6 :: ExprRep6 r ! �Integer ! Integer�! Arrow r Integer
abs6 �Ret6 n� � ret n
abs6 Sub6 � sub
abs6 �B1

6 x y� � b1 �abs6 x� �abs6 y�
abs6 �B2

6 x y� � b2 �abs6 x� �abs6 y�
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But still tree-shaped

B1

B1 B2

Ret B2 Ret Sub

3 Ret Sub 5

4

abs6�!

b1

b1 b2

ret b2 ret sub

3 ret sub 5

4
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7. Associativity

Generalized composition is (of course!) (pseudo-)associative:

f

gh

x1

...

xr

xr�1...
xr�s

�

f

gh

x1

...

xr

xr�1...
xr�s

ie br �bs�1 h g� f � br�s h �br g f �. Hence rotate tree-shaped code to linear.
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Rotating

eval5 expr
� �� definition of eval5, eval05; b0 is application ��

b0 �b1 �b1 �ret 3� �b2 �ret 4� sub�� �b2 �ret 5� sub�� halt
� �� pseudo-associativity: b0 �b1 h g� f � b0 h �b0 g f � ��

b0 �b1 �ret 3� �b2 �ret 4� sub�� �b0 �b2 �ret 5� sub� halt�
� �� pseudo-associativity: b0 �b1 h g� f � b0 h �b0 g f � ��

b0 �ret 3� �b0 �b2 �ret 4� sub� �b0 �b2 �ret 5� sub� halt��
� �� pseudo-associativity: b0 �b2 h g� f � b1 h �b0 g f � ��

b0 �ret 3� �b1 �ret 4� �b0 sub �b0 �b2 �ret 5� sub� halt���
� �� pseudo-associativity: b0 �b2 h g� f � b1 h �b0 g f � ��

b0 �ret 3� �b1 �ret 4� �b0 sub �b1 �ret 5� �b0 sub halt����
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Linear code

data ExprRep7 :: �Type�! Type where

Halt7 :: ExprRep7
0�Integer�

BRet7 :: Integer !
ExprRep7 �Integer 0: r�! ExprRep7 r

BSub7 :: ExprRep7 �Integer 0: r�! ExprRep7 �Integer 0: Integer 0: r�
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Representation and interpretation

rep7 :: Expr ! ExprRep7
0��

rep7 �Lit n� � BRet7 n Halt7

rep7 �Diff e e0� � append �rep7 e� �append �rep7 e0� �BSub7 Halt7��

abs7 :: ExprRep7 r ! Arrow r Integer
abs7 Halt7 � halt
abs7 �BRet7 n k� � ret n �abs7 k�
abs7 �BSub7 k� � flip �sub �abs7 k��

(note flipping subtraction), where. . .
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Concatenating code

Appending type-level lists:

type family Append �as :: �Type�� �bs :: �Type�� :: �Type�
where

Append 0�� bs � bs
Append �a 0: as� bs � a 0: Append as bs

and appending linear programs:

append :: ExprRep7 r ! ExprRep7 �Integer 0: s�! ExprRep7 �Append r s�
append Halt7 y � y
append �BRet7 n k� y � BRet7 n �append k y�
append �BSub7 k� y � BSub7 �append k y�
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No longer tree-shaped

BRet7

3 BRet7

4 BSub7

BRet7

5 BSub7

Halt7

abs7�!

b0

ret b1

3 ret b0

4 sub b1

ret b0

5 sub halt
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This is where the compiler comes from!

compile7 :: Expr ! �Instr �
compile7 � compileRep7 � rep7 where

compileRep7 :: ExprRep7 r ! �Instr �
compileRep7 Halt7 � � �
compileRep7 �BRet7 n k� � PushI n : compileRep7 k
compileRep7 �BSub7 k� � SubI : compileRep7 k

Indeed:

compile7 expr � �PushI 3;PushI 4; SubI ;PushI 5; SubI �
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8. Conclusion

• accumulating parameters

• continuation-passing style and defunctionalization

• Reynolds, Danvy: recursive interpreter  tail-recursive abstract machine

• many other applications: fast reverse, traversals, zippers. . .

• but there’s usually an appeal to associativity there too

Definitional Interpreters for Higher-Order Programming Languages 

3ohn C. Reynolds, Syracuse University 

Higher-order programming languages (i.e., 
languages in which procedures or labels 
can occur as values) are usually defined 
by interpreters which are themselves 
written in a programming language based 
on the lambda calculus (i.e., an 
applicative language such as pure LISP). 
Examples include McCarthy's definition 
of LISP, Landin's SECD machine, the 
Vienna definition of PL/I, Reynolds' 
definitions of GED~KEN, and recent 
unpublished work by L. Morris and 
C. Wadsworth. Such definitions can be 
classified according to whether the 
interpreter contains higher-order 
functions, and whether the order of 
application (i.e., call-by-value versus 
call-by-name) in the defined language 
depends upon the order of application 
in the defining language. As an example, 
we consider the definition of a simple 
applicative programming language by 
means of an interpreter written in 
a similar language. Definitions in 
each of the above classifications are 
derived from one another by informal 
but constructive methods. The treat- 
ment of imperative features such as 
jumps and assignment is also discussed. 

Key Words and Phrases: programming 
language, language definition, 
interpreter, lambda calculus, 
applicative language, higher-order 
function, closure, order of appli- 
cation, continuation, LISP, 
GEDANKEN, PAL, SECD machine, 
J-operator, reference. 
CR Categories: 4.20, 5.24, 4.13 

%Work supported by Rome Air Force Dev- 
elopment Center Contract No. 
30602-72-C-0281 and ARPA Contract No. 
DAHC04-72-C-0003. 

INTRODUCTION 

An important and frequently used 
method of defining a programming language 
is to give an interpreter for the language 
which is written in a second, hopefully 
better understood language. (We will 
call these two languages the defined 
and defining languages, respectively.) 
In this paper, we will describe and 
classify several varieties of such 
interpreters, and show how they may be 
derived from one another by informal but 
constructive methods. Although our 
approach to "constructive classification" 
is original, the paper is basically an 
attempt to review and systematize 
previous work in the field, and we have 
tried to make the presentation accessible 
to readers who are unfamiliar with this 
previous work. 

(Of course, interpretation can 
provide an implementation as well as a 
definition, but there are large practical 
differences between these usages. 
Definitional interpreters often achieve 
clarity by sacrificing all semblence of 
efficiency.) 

We begin by noting some salient 
charact%ristics of programming languages 
themselves. The features of these 
languages can be divided usefully into 
two categories: applicative features, 
such as expression evaluation and the 
definition and application of functions, 
and imperative features, such as 
statement sequencing, labels, jumps, 
assignment, and procedural side-effects. 
Most user-oriented languages provide 
features in both categories. Although 
machine languages are usually completely 
imperative, there are few "higher-level" 
languages in this category. (IPL/V 
might be an example.) On the other hand, 
there is at least one well-known example 
of a purely applicative language: LISP. 
(i.e., the language defined in McCarthy's 
original paper. ~I Most LISP implemen- 
tations provide an extended language 
including imperative features.) There 
are also several more recent, rather 
theoretical languages (ISWIM(2), PAL(3) 
and GEDANKEN (4)) which have been designed 
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and defining languages, respectively.) 
In this paper, we will describe and 
classify several varieties of such 
interpreters, and show how they may be 
derived from one another by informal but 
constructive methods. Although our 
approach to "constructive classification" 
is original, the paper is basically an 
attempt to review and systematize 
previous work in the field, and we have 
tried to make the presentation accessible 
to readers who are unfamiliar with this 
previous work. 

(Of course, interpretation can 
provide an implementation as well as a 
definition, but there are large practical 
differences between these usages. 
Definitional interpreters often achieve 
clarity by sacrificing all semblence of 
efficiency.) 

We begin by noting some salient 
charact%ristics of programming languages 
themselves. The features of these 
languages can be divided usefully into 
two categories: applicative features, 
such as expression evaluation and the 
definition and application of functions, 
and imperative features, such as 
statement sequencing, labels, jumps, 
assignment, and procedural side-effects. 
Most user-oriented languages provide 
features in both categories. Although 
machine languages are usually completely 
imperative, there are few "higher-level" 
languages in this category. (IPL/V 
might be an example.) On the other hand, 
there is at least one well-known example 
of a purely applicative language: LISP. 
(i.e., the language defined in McCarthy's 
original paper. ~I Most LISP implemen- 
tations provide an extended language 
including imperative features.) There 
are also several more recent, rather 
theoretical languages (ISWIM(2), PAL(3) 
and GEDANKEN (4)) which have been designed 
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