
How I Design Programs

Jeremy Gibbons

BOBKonf, February 2021

Continuation-passing style,

defunctionalization, and associativity

Jeremy Gibbons

BOBKonf, February 2021

CPS etc 3

1. Teaser

Binary trees:

data Tree a � Tip a j Bin �Tree a� �Tree a�

with flattening to lists:

flatten1 :: Tree a ! �a�
flatten1 �Tip x� � �x�
flatten1 �Bin t u� � flatten1 t �� flatten1 u

Takes quadratic time, because of left-nested ��s.

How to do it in linear time?

And what does this have to do with abstract machines?

1

2 3

4

CPS etc 4

2. Factorial

fact1 :: Integer ! Integer
fact1 0 � 1
fact1 n � n� fact1 �n� 1�

Recursive.

CPS etc 5

Continuation-passing style

Introduce continuation as accumulating parameter:

fact02 n k � k �fact1 n�

Then calculate:

fact2 :: Integer ! Integer
fact2 n � fact02 n id

fact02 :: Integer ! �Integer ! Integer�! Integer
fact02 0 k � k 1
fact02 n k � fact02 �n� 1� ��m! k �n�m��

Now tail-recursive, but higher-order.

CPS etc 6

Defunctionalize

The continuations aren’t arbitrary Integer ! Integer functions:
always of the form id � �a�� � �b�� � � � � � �c��.
Data-refine this continuation to a list �a;b; : : : ; c�:

fact3 :: Integer ! Integer
fact3 n � fact03 n � �

fact03 :: Integer ! �Integer �! Integer
fact03 0 k � product k
fact03 n k � fact03 �n� 1� �k �� �n��

Tail-recursive, first order—but uses data structures.

CPS etc 7

Associativity

Further data-refine �a;b; : : : ; c� to a� b � � � � � c.

fact4 :: Integer ! Integer
fact4 n � fact04 n 1

fact04 :: Integer ! Integer ! Integer
fact04 0 k � k
fact04 n k � fact04 �n� 1� �k � n�

Data refinement valid by associativity.

Familiar: tail-recursive, first-order, only scalar data.

(This last step wouldn’t work for “subtractorial”.)

n;k :�N ;1;

f inv: n > 0 ^ k � n! � N ! g
while n 6� 0 do

n;k :� n� 1;k � n

end

f k � N ! g

CPS etc 8

3. Reverse

Similarly, naive quadratic-time reverse:

reverse1 :: �a�! �a�
reverse1 � � � � �
reverse1 �x : xs� � reverse1 xs �� �x�

CPS; defunctionalize; associativity:

reverse3 :: �a�! �a�
reverse3 xs � reverse03 xs � �

reverse03 :: �a�! �a�! �a�
reverse03 � � k � k
reverse03 �x : xs� k � reverse03 xs �x : k�

CPS etc 9

4. Tree traversal

Binary trees:

data Tree a � Tip a j Bin �Tree a� �Tree a�

with flattening to lists:

flatten1 :: Tree a ! �a�
flatten1 �Tip x� � �x�
flatten1 �Bin t u� � flatten1 t �� flatten1 u

Not tail-recursive;
also quadratic time, because of left-nested ��s.

1

2 3

4

CPS etc 10

CPS

Introduce continuation as accumulating parameter:

flatten02 t k � k �flatten1 t�

then calculate:

flatten2 :: Tree a ! �a�
flatten2 t � flatten02 t id

flatten02 :: Tree a ! ��a�! �a��! �a�
flatten02 �Tip x� k � k �x�
flatten02 �Bin t u� k � flatten02 t ��xs !

flatten02 u ��ys ! k �xs �� ys���

Tail-recursive, but higher-order, and still quadratic.

CPS etc 10

CPS

Introduce continuation as accumulating parameter:

flatten02 t k � k �flatten1 t�

then calculate (NB visit right child before left):

flatten2 :: Tree a ! �a�
flatten2 t � flatten02 t id

flatten02 :: Tree a ! ��a�! �a��! �a�
flatten02 �Tip x� k � k �x�
flatten02 �Bin t u� k � flatten02 u ��ys !

flatten02 t ��xs ! k �xs �� ys���

Tail-recursive, but higher-order, and still quadratic.

1

2 3

4

CPS etc 11

Defunctionalize

Three ways of constructing the continuations k:

id -- no free variables
�xs ! k �xs �� ys� -- free variables ys :: �a�;k
�ys ! flatten02 t ��xs ! k �xs �� ys�� -- free variables t :: Tree a;k

—always a sequence, elements either �a� or Tree a.

So introduce the following representation:

type FlattenCont4 a � �Either �a� �Tree a��

with abstraction function

flattenabs4 :: FlattenCont4 a ! ��a�! �a��

CPS etc 12

Data refinement

Then data-refine flatten2 to:

flatten4 :: Tree a ! �a�
flatten4 t � flatten04 t � �

flatten04 :: Tree a ! FlattenCont4 a ! �a�
flatten04 �Tip x� k � flattenabs4 k �x�
flatten04 �Bin t u� k � flatten04 u �Right t : k�

flattenabs4 � � � id
flattenabs4 �Left ys : k� � �xs ! flattenabs4 k �xs �� ys�
flattenabs4 �Right t : k� � �ys ! flatten04 t �Left ys : k�

CPS etc 13

Example

Let xsi � flatten1 ti for i � 1; : : : ;4.

While visiting subtree t2, continuation is

�Left xs3;Right t1;Left xs4�

Having obtained xs2 � flatten1 t2, result is

�flatten1 t1 �� �xs2 �� xs3���� xs4

By associativity of ��, irrelevant relative ordering of
Lefts (appended) and Rights (prepended):

flattenabs4 k � flattenabs4 �map Left �lefts k���
map Right �rights k��

t1

t3

t4

t2

CPS etc 14

Associativity

flattenabs4 k � flattenabs4 �Left �concat �lefts k����
map Right �rights k���

by associativity of �� again, justifying another data refinement:

type FlattenCont5 a � ��a�; �Tree a�� -- ‘context’

flatten5 :: Tree a ! �a�
flatten5 t � flatten05 t �� �; � ��

flatten05 :: Tree a ! FlattenCont5 a ! �a�
flatten05 �Tip x� �ys; ts� � flattenabs5 �ys; ts� �x�
flatten05 �Bin t u� �ys; ts� � flatten05 u �ys; t : ts�

flattenabs5 �ys; � �� � �xs ! xs �� ys
flattenabs5 �ys; t : ts� � �ys0 ! flatten05 t �ys0 �� ys; ts� -- ys0 a singleton

CPS etc 15

Familiar

Yet another data refinement, combining
tree-in-focus and stack of trees into just a stack:

flatten6 :: Tree a ! �a�
flatten6 t � flatten06 �t � � �

flatten06 �Tip x : ts� ys � flatten06 ts �x : ys�
flatten06 �Bin t u : ts� ys � flatten06 �u : t : ts� ys
flatten06 � � ys � ys

—the tail-recursive, linear-time program you might have written.

CPS etc 16

Zipper etc

Apply the same process to

id :: Tree a ! Tree a

yields defunctionalized continuations

�Either �Tree a� �Tree a��

which is Huet’s zipper. For

yields

which is McBride’s clowns and jokers.

CPS etc 16

Zipper etc

Apply the same process to

id :: Tree a ! Tree a

yields defunctionalized continuations

�Either �Tree a� �Tree a��

which is Huet’s zipper. For

treeMap :: �a ! b�! Tree a ! Tree b

yields

�Either �Tree b� �Tree a��

which is McBride’s clowns and jokers.

CPS etc 17

5. Hutton’s Razor

data Expr � Lit Integer j Diff Expr Expr
expr � Diff �Diff �Lit 3� �Lit 4�� �Lit 5�

eval1 :: Expr ! Integer
eval1 �Lit n� � n
eval1 �Diff e e0� � eval1 e� eval1 e0 Diff

Diff Lit

Lit Lit

3 4

5

CPS etc 18

CPS

type EvalCont2 � Integer ! Integer

eval2 :: Expr ! Integer
eval2 e � eval02 e id

eval02 :: Expr ! EvalCont2 ! Integer
eval02 �Lit n� k � k n
eval02 �Diff e e0� k � eval02 e ��m! eval02 e0 ��n! k �m� n���

Tail-recursive, but higher-order.

CPS etc 19

Defunctionalize

type EvalCont3 � �Either Expr Integer �

eval3 :: Expr ! Integer
eval3 e � eval03 e � �

eval03 :: Expr ! EvalCont3 ! Integer
eval03 �Lit n� k � evalabs3 k n
eval03 �Diff e e0� k � eval03 e �Left e0 : k�

evalabs3 :: EvalCont3 ! �Integer ! Integer�
evalabs3 � � n � n
evalabs3 �Left e0 : k� m � eval03 e0 �Right m : k�
evalabs3 �Right m : k� n � evalabs3 k �m� n�

An interpreter, but not a compiler: stack contains expressions.

CPS etc 20

Where does this compiler come from?

data Instr � PushI Integer j SubI
-- eg �PushI 3;PushI 4; SubI ;PushI 5; SubI �

compile4 :: Expr ! �Instr �
compile4 �Lit n� � �PushI n�
compile4 �Diff e e0� � compile4 e�� compile4 e0 �� �SubI �

exec4 :: �Instr �! �Integer �! �Integer �
exec4 p s � foldl step s p where

step ns �PushI n� � n : ns
step �n : m : ns� SubI � �m� n� : ns -- NB flipping!

eval4 :: Expr ! Integer
eval4 e � case exec4 �compile4 e� � � of �n�! n

CPS etc 21

. . . without pulling rabbits from hats

CPS etc 21

. . . without pulling rabbits from hats

CPS etc 21

. . . without pulling rabbits from hats

CPS etc 22

6. Generalized composition

Generalize composition to propagate multiple arguments:

br g f � �x1 : : : xr ! g �f x1 : : : xr�

fg

x1

...

xr

ie

b0 g f � g f
br�1 g f � �x ! br g f x

Deriving Target Code as a Representation
of Continuation Semantics
MITCHELL WAND
Indiana University

Reynolds' technique for deriving interpreters is extended to derive compilers from continuation
semantics. The technique starts by eliminating h-variables from the semantic equations through the
introduction of special-purpose combinators. The semantics of a program phrase may be represented
by a term built from these combinators. Then associative and distributive laws are used to simplify
the terms. Last, a machine is built to interpret the simplified terms as the functions they represent.
The combinators reappear as the instructions of this machine. The technique is illustrated with three
examples.
Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and
Theory--semantics; D.3.4 [Programming Languages]: Processors--code generation; compilers;
F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages--denotational
semantics; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Lo~c--lambda
calculus and related systems
General Terms: Languages, Theory
Additional Key Words and Phrases: Continuations, combinators

1. INTRODUCTION
I n th is paper , we a t t ack the q u e s t i o n of how a d e n o t a t i o n s] s e m a n t i c s for a
l anguage is r e l a t ed to a n i m p l e m e n t a t i o n of t h a t language . Typ ica l ly , one con-
s t ruc t s the s eman t i c s of a t a rge t m a c h i n e a n d of a (su i tab ly abs t rac t) compi le r
a n d proves a cong ruence b e t w e e n the two d i f fe rent s e m a n t i c s [12].

Our a p p r o a c h is qu i te different . S t a r t i n g wi th a c o n t i n u a t i o n s e m a n t i c s for the
source language , we cons t ruc t , v ia a series of t r a n s f o r m a t i o n s a n d r e p r e s e n t a t i o n
decisions, a t a rge t m a c h i n e a n d a compiler . A typ ica l s e m a n t i c s has f u n c t i o n a l i t y

P: P g m s ---> [Inputs -* Outputs].

A c o m p i l e r / t a r g e t mach ine , on the o the r hand , uses the pa i r of f unc t i ons

C o m p i l e : P g m s --, Reps;
M a c h i n e : R eps --. [Inputs ---> Outputs]

This material is based on work supported by the National Science Foundation under grant MCS79-
04183.
Author's address: Computer Science Department, Indiana University, Bloomington, IN 47405.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1982 ACM 0164-0925/82/0700-0496 $00.75
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982, Pages 496-517.

CPS etc 23

Implementing generalized composition

Arities:

type family Arrow �as :: �Type�� �b :: Type� where

Arrow 0�� b � b
Arrow �a 0: as� b � a ! Arrow as b

eg

Arrow 0�Char;Bool� String � Char ! Bool ! String

Then we can define

b :: �b ! c�! Arrow as b ! Arrow as c

(roughly. . .)

CPS etc 24

Installing

Recall:

eval2 e � eval02 e id
eval02 �Lit n� � �k ! k n
eval02 �Diff e e0� � �k ! eval02 e ��m! eval02 e0 ��n! k �m� n���

CPS etc 24

Installing

Recall:

eval2 e � eval02 e halt
eval02 �Lit n� � ret n
eval02 �Diff e e0� � �k ! eval02 e ��m! eval02 e0 ��n! sub k m n��

where for later convenience we introduce:

halt � id
ret n � �k ! k n
sub � �k m n! k �m� n�

CPS etc 24

Installing

Recall:

eval2 e � eval02 e halt
eval02 �Lit n� � ret n
eval02 �Diff e e0� � �k ! eval02 e ��m! eval02 e0 ��n! sub k m n��

Then:

eval02 �Diff e e0�
� �� definition ��
�k ! eval02 e ��m! eval02 e0 ��n! sub m k n��
� �� since �k ! g �f k� is b1 g ��k ! f k� ��

b1 �eval02 e� ��k m! eval02 e0 ��n! sub k m n��
� �� since �k m! g �f k m� is b2 g ��k m! f k m� ��

b1 �eval02 e� �b2 �eval02 e0� sub�

CPS etc 25

An equivalent evaluator

Rewrite the Diff case of eval02:

eval5 :: Expr ! Integer
eval5 e � eval05 e halt where

eval05 :: Expr ! �Integer ! Integer�! Integer
eval05 �Lit n� � ret n
eval05 �Diff e e0� � b1 �eval05 e� �b2 �eval05 e0� sub�

CPS etc 26

Tree-shaped code

data ExprRep6 :: �Type�! Type where

Ret6 :: Integer ! ExprRep6
0��

Sub6 :: ExprRep6
0�Integer; Integer�

B1
6 :: ExprRep6

0��!
ExprRep6

0�Integer�! ExprRep6
0��

B2
6 :: ExprRep6

0��!
ExprRep6

0�Integer; Integer�! ExprRep6
0�Integer�

Type index denotes what extra values are needed to complete evaluation.

CPS etc 27

Representation and interpretation

rep6 :: Expr ! ExprRep6
0��

rep6 �Lit n� � Ret6 n
rep6 �Diff e e0� � B1

6 �rep6 e� �B2
6 �rep6 e0� Sub6�

abs6 :: ExprRep6 r ! �Integer ! Integer�! Arrow r Integer
abs6 �Ret6 n� � ret n
abs6 Sub6 � sub
abs6 �B1

6 x y� � b1 �abs6 x� �abs6 y�
abs6 �B2

6 x y� � b2 �abs6 x� �abs6 y�

CPS etc 28

But still tree-shaped

B1

B1 B2

Ret B2 Ret Sub

3 Ret Sub 5

4

abs6�!

b1

b1 b2

ret b2 ret sub

3 ret sub 5

4

CPS etc 29

7. Associativity

Generalized composition is (of course!) (pseudo-)associative:

f

gh

x1

...

xr

xr�1...
xr�s

�

f

gh

x1

...

xr

xr�1...
xr�s

ie br �bs�1 h g� f � br�s h �br g f �. Hence rotate tree-shaped code to linear.

CPS etc 30

Rotating

eval5 expr
� �� definition of eval5, eval05; b0 is application ��

b0 �b1 �b1 �ret 3� �b2 �ret 4� sub�� �b2 �ret 5� sub�� halt
� �� pseudo-associativity: b0 �b1 h g� f � b0 h �b0 g f � ��

b0 �b1 �ret 3� �b2 �ret 4� sub�� �b0 �b2 �ret 5� sub� halt�
� �� pseudo-associativity: b0 �b1 h g� f � b0 h �b0 g f � ��

b0 �ret 3� �b0 �b2 �ret 4� sub� �b0 �b2 �ret 5� sub� halt��
� �� pseudo-associativity: b0 �b2 h g� f � b1 h �b0 g f � ��

b0 �ret 3� �b1 �ret 4� �b0 sub �b0 �b2 �ret 5� sub� halt���
� �� pseudo-associativity: b0 �b2 h g� f � b1 h �b0 g f � ��

b0 �ret 3� �b1 �ret 4� �b0 sub �b1 �ret 5� �b0 sub halt����

CPS etc 31

Linear code

data ExprRep7 :: �Type�! Type where

Halt7 :: ExprRep7
0�Integer�

BRet7 :: Integer !
ExprRep7 �Integer 0: r�! ExprRep7 r

BSub7 :: ExprRep7 �Integer 0: r�! ExprRep7 �Integer 0: Integer 0: r�

CPS etc 32

Representation and interpretation

rep7 :: Expr ! ExprRep7
0��

rep7 �Lit n� � BRet7 n Halt7

rep7 �Diff e e0� � append �rep7 e� �append �rep7 e0� �BSub7 Halt7��

abs7 :: ExprRep7 r ! Arrow r Integer
abs7 Halt7 � halt
abs7 �BRet7 n k� � ret n �abs7 k�
abs7 �BSub7 k� � flip �sub �abs7 k��

(note flipping subtraction), where. . .

CPS etc 33

Concatenating code

Appending type-level lists:

type family Append �as :: �Type�� �bs :: �Type�� :: �Type�
where

Append 0�� bs � bs
Append �a 0: as� bs � a 0: Append as bs

and appending linear programs:

append :: ExprRep7 r ! ExprRep7 �Integer 0: s�! ExprRep7 �Append r s�
append Halt7 y � y
append �BRet7 n k� y � BRet7 n �append k y�
append �BSub7 k� y � BSub7 �append k y�

CPS etc 34

No longer tree-shaped

BRet7

3 BRet7

4 BSub7

BRet7

5 BSub7

Halt7

abs7�!

b0

ret b1

3 ret b0

4 sub b1

ret b0

5 sub halt

CPS etc 35

This is where the compiler comes from!

compile7 :: Expr ! �Instr �
compile7 � compileRep7 � rep7 where

compileRep7 :: ExprRep7 r ! �Instr �
compileRep7 Halt7 � � �
compileRep7 �BRet7 n k� � PushI n : compileRep7 k
compileRep7 �BSub7 k� � SubI : compileRep7 k

Indeed:

compile7 expr � �PushI 3;PushI 4; SubI ;PushI 5; SubI �

CPS etc 36

8. Conclusion

• accumulating parameters

• continuation-passing style and defunctionalization

• Reynolds, Danvy: recursive interpreter tail-recursive abstract machine

• many other applications: fast reverse, traversals, zippers. . .

• but there’s usually an appeal to associativity there too

Definitional Interpreters for Higher-Order Programming Languages

3ohn C. Reynolds, Syracuse University

Higher-order programming languages (i.e.,
languages in which procedures or labels
can occur as values) are usually defined
by interpreters which are themselves
written in a programming language based
on the lambda calculus (i.e., an
applicative language such as pure LISP).
Examples include McCarthy's definition
of LISP, Landin's SECD machine, the
Vienna definition of PL/I, Reynolds'
definitions of GED~KEN, and recent
unpublished work by L. Morris and
C. Wadsworth. Such definitions can be
classified according to whether the
interpreter contains higher-order
functions, and whether the order of
application (i.e., call-by-value versus
call-by-name) in the defined language
depends upon the order of application
in the defining language. As an example,
we consider the definition of a simple
applicative programming language by
means of an interpreter written in
a similar language. Definitions in
each of the above classifications are
derived from one another by informal
but constructive methods. The treat-
ment of imperative features such as
jumps and assignment is also discussed.

Key Words and Phrases: programming
language, language definition,
interpreter, lambda calculus,
applicative language, higher-order
function, closure, order of appli-
cation, continuation, LISP,
GEDANKEN, PAL, SECD machine,
J-operator, reference.
CR Categories: 4.20, 5.24, 4.13

%Work supported by Rome Air Force Dev-
elopment Center Contract No.
30602-72-C-0281 and ARPA Contract No.
DAHC04-72-C-0003.

INTRODUCTION

An important and frequently used
method of defining a programming language
is to give an interpreter for the language
which is written in a second, hopefully
better understood language. (We will
call these two languages the defined
and defining languages, respectively.)
In this paper, we will describe and
classify several varieties of such
interpreters, and show how they may be
derived from one another by informal but
constructive methods. Although our
approach to "constructive classification"
is original, the paper is basically an
attempt to review and systematize
previous work in the field, and we have
tried to make the presentation accessible
to readers who are unfamiliar with this
previous work.

(Of course, interpretation can
provide an implementation as well as a
definition, but there are large practical
differences between these usages.
Definitional interpreters often achieve
clarity by sacrificing all semblence of
efficiency.)

We begin by noting some salient
charact%ristics of programming languages
themselves. The features of these
languages can be divided usefully into
two categories: applicative features,
such as expression evaluation and the
definition and application of functions,
and imperative features, such as
statement sequencing, labels, jumps,
assignment, and procedural side-effects.
Most user-oriented languages provide
features in both categories. Although
machine languages are usually completely
imperative, there are few "higher-level"
languages in this category. (IPL/V
might be an example.) On the other hand,
there is at least one well-known example
of a purely applicative language: LISP.
(i.e., the language defined in McCarthy's
original paper. ~I Most LISP implemen-
tations provide an extended language
including imperative features.) There
are also several more recent, rather
theoretical languages (ISWIM(2), PAL(3)
and GEDANKEN (4)) which have been designed

717

Definitional Interpreters for Higher-Order Programming Languages

3ohn C. Reynolds, Syracuse University

Higher-order programming languages (i.e.,
languages in which procedures or labels
can occur as values) are usually defined
by interpreters which are themselves
written in a programming language based
on the lambda calculus (i.e., an
applicative language such as pure LISP).
Examples include McCarthy's definition
of LISP, Landin's SECD machine, the
Vienna definition of PL/I, Reynolds'
definitions of GED~KEN, and recent
unpublished work by L. Morris and
C. Wadsworth. Such definitions can be
classified according to whether the
interpreter contains higher-order
functions, and whether the order of
application (i.e., call-by-value versus
call-by-name) in the defined language
depends upon the order of application
in the defining language. As an example,
we consider the definition of a simple
applicative programming language by
means of an interpreter written in
a similar language. Definitions in
each of the above classifications are
derived from one another by informal
but constructive methods. The treat-
ment of imperative features such as
jumps and assignment is also discussed.

Key Words and Phrases: programming
language, language definition,
interpreter, lambda calculus,
applicative language, higher-order
function, closure, order of appli-
cation, continuation, LISP,
GEDANKEN, PAL, SECD machine,
J-operator, reference.
CR Categories: 4.20, 5.24, 4.13

%Work supported by Rome Air Force Dev-
elopment Center Contract No.
30602-72-C-0281 and ARPA Contract No.
DAHC04-72-C-0003.

INTRODUCTION

An important and frequently used
method of defining a programming language
is to give an interpreter for the language
which is written in a second, hopefully
better understood language. (We will
call these two languages the defined
and defining languages, respectively.)
In this paper, we will describe and
classify several varieties of such
interpreters, and show how they may be
derived from one another by informal but
constructive methods. Although our
approach to "constructive classification"
is original, the paper is basically an
attempt to review and systematize
previous work in the field, and we have
tried to make the presentation accessible
to readers who are unfamiliar with this
previous work.

(Of course, interpretation can
provide an implementation as well as a
definition, but there are large practical
differences between these usages.
Definitional interpreters often achieve
clarity by sacrificing all semblence of
efficiency.)

We begin by noting some salient
charact%ristics of programming languages
themselves. The features of these
languages can be divided usefully into
two categories: applicative features,
such as expression evaluation and the
definition and application of functions,
and imperative features, such as
statement sequencing, labels, jumps,
assignment, and procedural side-effects.
Most user-oriented languages provide
features in both categories. Although
machine languages are usually completely
imperative, there are few "higher-level"
languages in this category. (IPL/V
might be an example.) On the other hand,
there is at least one well-known example
of a purely applicative language: LISP.
(i.e., the language defined in McCarthy's
original paper. ~I Most LISP implemen-
tations provide an extended language
including imperative features.) There
are also several more recent, rather
theoretical languages (ISWIM(2), PAL(3)
and GEDANKEN (4)) which have been designed

717

