UNIVERSITY OF

OXFORD

How | Design Programs

Jeremy Gibbons
BOBKonf, February 2021

UNIVERSITY OF

OXFORD

Continuation-passing style,

defunctionalization, and associativity

Jeremy Gibbons
BOBKonf, February 2021

1. Teaser

Binary trees:

dataTreea TipajBin Treea Treea
with flattening to lists:

flatten, :: Treea ¥ a

flatten, Tip X X

flatten; Bintu flatten; t flatten, u
Takes quadratic time, because of left-nested s.
How to do it in linear time?

And what does this have to do with abstract machines?

CPS etc

2. Factorial

fact, .. Integer ¥ Integer
fact; 0 1
facty;n n fact; n 1

Recursive.

Continuation-passing style

Introduce continuation as accumulating parameter:
fact% nk k fact;n
Then calculate:

fact, .. Integer ¥ Integer
fact, n fact% nid

fact%:: Integer ¥ Integer ¥ Integer 1Y Integer
fact, Ok k1
factonk facta n 1 mY¥k n m

Now tail-recursive, but higher-order.

Defunctionalize

The continuations aren’t arbitrary Integer ¥ Integer functions:
always of the formid a b C

fact, :: Integer ¥ Integer

fact; n fa(:t?3 n

fact% . Integer ¥ Integer ¥ Integer
fac;t?3 Ok product k

factank fact n 1 k n

Tall-recursive, first order—but uses data structures.

Associativity

fact, :: Integer ¥ Integer
fact,n fact,n1

fact%:: Integer ¥ Integer ¥ Integer
fact) Ok Kk
factunk fact, n 1 k n

Data refinement valid by associativity.

Familiar: tail-recursive, first-order, only scalar data.

(This last step wouldn’t work for “subtractorial”.)

n:k: N

;1

finvin>0"Nk
whilen 6 0 do

Nn:K:
end
f k NI

n 1:k

9

n!

n

N!

9

3. Reverse

Similarly, naive quadratic-time reverse:

reverse;:: a T a
reverse,
reverse; X :XS reverse; Xs X

CPS; defunctionalize; associativity:
reversez:: a 1 a
reverses Xs reversey xs

reverse;: a 1 a 1 a
reversey k Kk
reversey x:xs k reversej xs x:k

4. Tree traversal

Binary trees:
dataTreea TipajBin Treea Treea
with flattening to lists:

flatten, :: Treea ¥ a
flatten, Tip X X
flatten; Bintu flatten; t flatten, u

Not tail-recursive;
also gquadratic time, because of left-nested s.

CPS

Introduce continuation as accumulating parameter:
flatten) t k k flatten, t

then calculate:
flatten, ;. Treea ¥ a

flatten, t flatteng tid

flatten) ::Treea ! a ¥ a I a
flatteng Tipx k Kk X
flatten, Bintu k flatten,t xs ¥
flatten% u ys ¥k xs vys

CPS

Introduce continuation as accumulating parameter:
flatten) t k k flatten, t
then calculate (NB visit right child before left):

flatten, ;. Treea ¥ a e
flatten, t flatteng tid

flatten) ::Treea ! a ¥ a I a G‘

flatteny, Tipx k k x /)

flatten, Bintu k flattenyu ys ¥ &e ‘%
flatten% t xs Tk Xs ys

Tail-recursive, but higher-order, and still quadratic.

Defunctionalize

Three ways of constructing the continuations K:
id

Xxs T kK Xxs ys

-- no free variables

-- free variables ys:: a ;k
ys ¥ flatten%t xs T kK Xxs ys -- free variables t :: Tree a; k

—always a sequence, elements either a or Tree a.

So introduce the following representation:

type FlattenCont, a Either a Treea

with abstraction function

flattenabs, :: FlattenCont;a ®* a Y a

CPS etc

Data refinement

Then data-refine flatten, to:

flatten, :: Treea ¥ a
flatten, t flatteng1 t

flatten) :: Tree a ¥ FlattenCont,a ! a
flatten) Tipx k flattenabs, k x
flatten, Bintu k flatten) u Right t:k

flattenabs, Id
flattenabs, Left ys:k XS
flattenabs, Rightt:k yS

flattenabs, k xs ys
flatteng1 t Leftys:k

12

Example

Let xs; flatten, t; fori1 1;:::;4.

While visiting subtree t,, continuation is
Left xs3; Right tq; Left Xs4

Having obtained xs, flatten, t,, result is
flatten; t; XSo> XS3 XS4

By associativity of , irrelevant relative ordering of
Lefts (appended) and Rights (prepended):

flattenabs, k flattenabs, map Left lefts k
map Right rights k

[\
[\
AN

Associativity

flattenabs, k flattenabs, Left concat lefts k
map Right rights k

by associativity of again, justifying another data refinement:

type FlattenConts a a; Treea -- ‘context’

flatteng :: Treea ¥ a
flattens t flatten?3 t ;

flatteng :: Tree a ! FlattenContsa ! a
flattens Tipx ys;ts flattenabsg ys;ts X
flatten?3 Bintu ys;ts flatten?3 u ys;t:ts

flattenabss ys; Xs T Xs ys
flattenabss ys;t :ts ys? ¥ flatteni t ys' ys:;ts - ys® a singleton

Familiar

Yet another data refinement, combining
tree-in-focus and stack of trees into just a stack:

flatteng :: Treea ¥ a
flatteng t flatten?3 t

ﬂatteng5 Tipx:ts vys flatteng5 ts X:ys
flatten?5 Bintu:ts ys flatten?5 u:t:ts ys
flatten?3 & yS

—the tail-recursive, linear-time program you might have written.

Zipper etc

Apply the same process to

iId::Treea Y Tree a

yields defunctionalized continuations e

FUNCTIONAL PEARL
The Zipper

GERARD HUET

Either Treea Tree a

Capsule Review

Almost every programmer has faced the problem of representing a tree together with a
subtree that is the focus of attention, where that focus may move left, right, up or down the
tree. The Zipper is Huet’s nifty name for a nifty data structure which fulfills this need. T wish
1 had known of it when I faced this task, because the solution I came up with was not quite
so efficient or elegant as the Zipper.

which iIs Huet’s zipper.

1 Introduction

The main drawback to the purely applicative paradigm of programming is that
many efficient algorithms use destructive operations in data structures such as bit
vectors or character arrays or other mutable hierarchical classification structures,
which are not immediately modelled as purely applicative data structures. A well
known solution to this problem is called functional arrays (Paulson, 1991). For trees,
this amounts to modifying an occurrence in a tree non-destructively by copying its
path from the root of the tree. This is considered tolerable when the data structure
is just an object local to some algorithm, the cost being logarithmic compared to
the naive solution which copies all the tree. But when the data structure represents
some global context, such as the buffer of a text editor, or the database of axioms
and lemmas in a proof system, this technique is prohibitive. In this note, we explain
a simple solution where tree editing is completely local, the handle on the data not
being the original root of the tree, but rather the current position in the tree.

The basic idea is simple: the tree is turned inside-out like a returned glove,
pointers from the root to the current position being reversed in a path structure. The
current location holds both the downward current subtree and the upward path. All
navigation and modification primitives operate on the location structure. Going up
and down in the structure is analogous to closing and opening
of clothing, whence the name.

The author coined this data-type when designing the core of a structured editor
for use as a structure manager for a proof assistant. This simple idea must have been
invented on numerous occasions by creative programmers, and the only justification
for presenting what ought to be folklore is that it does not appear to have been
published, or even to be well-known.

a zipper in a piece

<. Bodieian Libraries of the Universityof Osford, on 16 Feb 2021 at 18:23:01, subjectto the Cambridge Core terms of use, avalable at

Downloaded from hitps
hitps /A cambric

CPS etc

Zipper etc

Apply the same process to
Id::Treea ¥ Treea
yields defunctionalized continuations
Either Treea Treea
which is Huet’s zipper. For
treeMap:: a® b Y Treea ! Treeb
lelds
Either Treeb Treea

which is McBride’s clowns and jokers.

Downloaded from hitps
[t

J. Functional Programming 7 (5): 549554, September 1997, Printed in the United Kingdom
© 1997 Cambridge University Press

549

Almost
subtree
tree. Thi
1 had ki
s0 efficif

The m
many
vectors|
which
known|
this am
path fr
is just
the nail
some ¢f
and len
a simp
being 1}
The
pointer]
currentl
naviga
and d
of clot]
The
for use:
invente]
for prel
publish

Clowns to the Left of me, Jokers to the Right (Pearl)

Dissecting Data Structures

Conor McBride

University of Nottingham
ctm@cs.nott.ac.uk

Abstract

This paper introduces a small but useful generalisation to the
“derivative’ operation on datatypes underlying Huet's notion of
“zipper’ (Huet 1997; McBride 2001; Abbott et al. 2005b), giv-
ing a concrete representation to one-hole contexts in data which
is undergoing transformation. This operator, ction’, turns a
continer ke funcior o 4 bifunctor reprscnting a one hole con-
text in which elements to the left of the hole are distinguished in
type from elements to its right

I present dissection here as a generic program, albeit for polyno-
mial functors only. The notion is certainly applicable more widely,
but here I prefer to concentrate on its diverse applications. For a
start, map-like operations over the functor and fold-like operations

1 the recursive data structure it induces can be expressed by tail
recursion alone. Further, the derivative is readily recovered from
the dissection. Indeed. it is the dissection structure which delivers
Huet’s operations for navigating zippers.

‘The original motivation for dissection was to define “division’,
capturing the notion of leftmost hole, canonically distinguishing
values with no elements from those with at least one. Division gives
tise to an isomorphism corresponding to the remainder theorem
in algebra. By way of a larger example, division and dissection
are exploited to give a relatively efficient generic algorithm for
abstracting all occurrences of one term from another in a first-order
syntax.

The source code for the paper is available online’ and compiles
with recent extensions to the Glasgow Haskell Compiler.

Categories and Subject Descriptors D.1.1 [Programming Tech-
nigues]: Applicative (Functional) Programming; 111 [Symbolic
and Algebraic Manipulation]: Expressions and Their Representa-
tion

General Terms ~ Algorithms, Design, Languages, Theory
Keywords Datatype. Differentiation, Dissection, Division, Generic

rogramming, Iteration, Polynomial, Stack, Tail Recursion, Traver-
sal, Zipper

'http://uuv.cs.nott.ac.uk/~ ctn/CloJo/CJ.1hs

Pemnission o make digital or hard copics of all or part of this work for personal or

classtoom use is granted without e provided that copies are not made or distibuted

forpm ‘advantage and that copi full tation
i pages gy i, o g, ot onsrver o e

e, s s s peassomadlor

POPL0S, January 7-12. 2008, San Francisco, California, USA.

Copyright © 2008 ACM 978-1-59593-639-0/081000L....$5.00

1. Introduction
There’s an old Stealer’s Wheel song with the memorable chorus:

“Clowns to the lefi of me, jokers 10 the righ,
Here I am, stuck in the middle with you."
Egan, Gerry Rafferty

In this paper, I examine what it's like o be stuck in the middle
of traversing and transforming a data structure. 'l show both you
and the Glasgow Haskell Compiler how to calculate the datatype of
3 frcastrame’ in 8 mag- o foldlic opesaton fom te duatype
being operated on. That xplain how (0 compute a first-class
data representation oFihe contret e underlying map and fold
traversals, via an operator which I call dissection. Dissection trns
out to generalise both the derivarive operator underlying Huet’s
“zippers’ (Huet 1997 McBride 2001) and the notion of division
used to calculate the non-constant part of a polynomial. Let me
take you on a journey into the algebra and differential calculus of
datatypes. in search of functionality from structure.

Here's an cmmpk traversal—evaluating a very simple language
of expres

data Expr = Val Int | Add Expr Expr
eval :: Expr — Int

ewal (Val i)

cval (Add ¢1 €2) = eval 1 + eval e

What happens if we freeze a traversal? Typically, we shall have
one piecs of dta i focus’ and 3 foe i the expresson where
it belongs, with unproc iead of us and processed data
behind. \\’L <Imul4l cxpul \mm,lhmg abit like Huet's "
resentation ufmun: hole context (Huet 1997), a stack-

ation and cacheing all the data
for sach mode between the hole nd the oot However. now e necd
different sorts of stuff on either side of the hole.

In the case of our evaluator, suppose we proceed left-to-right
Whenever we face an Add, we start by going left into the first
operand, recording the second Expr to process later; once we
have finished with the former, we must go right into the second
operand, recording the Int retumed from the first, as soon as we
have both values, we can add them. Correspondingly, a Stack of
these direction-with-cache choices completely determines where
we are in the evaluation process. Let's make this structure explicit

type Stack = [Expr + Int]

Now we can implement an “eval machine’—a tail-recursive pro-
‘gram. at each stage stuck in the middle with either an expression to
decompose, in which case we load the stack and go left, or a value

o retumn, in which case we unload the stack and try to move right.

orbrevity, L wite - + - for Either, L for Left and R for Right

16

5. Hutton’s Razor

data Expr Lit Integer j Diff Expr Expr
expr Diff Diff Lit3 Lit4 Lit5h

eval, :: Expr ¥ Integer

eval,; Litn n
eval; Diff ee® eval;e eval; €’ Diff
/\
Diff Lit
/ N\
Lit Lit 5
/ \

3 4

CPS etc

CPS

Talil-

type EvalCont, Integer Y Integer
eval, ;. Expr T Integer

eval, e eval% e id

evalg::Expr ¥ EvalCont, ¥ Integer

eval), Lit n k kn

eval, Diff ee” k evalye m ¥ eval, e’

recursive, but higher-order.

18

CPS etc

Defunctionalize

type EvalConts Either Expr Integer

evals :: Expr ¥ Integer
evalz e eval%e

eval%::Expr ¥ EvalConts ¥ Integer
eval% Lit n k evalabss; kn
evaly Diff ee” k evalye Lefte’:k

evalabss :: EvalConts ¥ Integer ¥ Integer
evalabss; n n

evalabs; Lefte’:k m evalle® Right m:k
evalabs; Right m:k n evalabssk m n

An interpreter, but not a compiler: stack contains expressions.

19

CPS etc

Where does this compiler come from?

data Instr Pushl Integer j Subl

-- eg Pushl 3;Pushl 4;Subl; Pushl 5; Subl
compile, ;i Expr ¥ Instr
compile, Litn Pushl n
compile, Diff ee’® compile,e compile, €’ Subl
execs:: Instr ¥ Integer ¥ Integer
execy ps foldl steps p where

step ns Pushl n n:ns
step n:m:ns Subl m n :ns --NB flipping!

eval, :: Expr ¥ Integer
eval, e case execy, compile, e of n In

20

CPS etc

... without pulling rabbits from hats

Calculating Correct Compilers

PATRICK BAHR
Department of Computer Science, University of Copenhagen, Denmark

GRAHAM HUTTON
School of Computer Science, University of Notungham, UK

Abstract

In this article we present a new approach to the problem of calculating compilers. In particular,
we develop a simple but general technique that allows us to derive correct compilers from high-
level semantics by systematic calculation, with all details of the implementation of the compilers
falling naturally out of the calculation process. Our approach i1s based upon the use of standard
equational reasoning techniques, and has been applied to calculate compilers for a wide range of
language features and their combination, including arithmetic expressions, exceptions, state, various
forms of lambda calculi, bounded and unbounded loops, non-determinism, and interrupts. All the
calculations in the article have been formalised using the Coq proof assistant, which serves as a

ey o rom a3 on e d dia b st feas] Fove davalamdit o and verifuinog thae c~alenilatiosg o

21

CPS etc

... without pulling rabbits from hats

Calculating Correct Compilers

In this
we de
level s
falling]
equati
langua
forms
calcul;

FarE S m L =8

2.2 Step 2 — Transform into a stack transformer

The next step is to transform the evaluation function into a version that utilises a stack,
in order to make the manipulation of argument values explicit. Jn particular, ra
M ST e @t =geficral evaluation function,
evals, that takes a stack of integers as an additional argument, and returns a modified stack
given by pushing the value of the expression onto the top of the stack. More precisely, if
we represent a stack as a list of integers (where the head is the top element)

type Stack = |Int]|
then we seek to derive a function
evals . Expr — Stack — Stack
such that:
evals xs = evalx:s (1)

The onerator © 1< the st constriictor in Haskell which ascociates to the richt For examnle

21

CPS etc

... without pulling rabbits from hats

Calculating Correct Compilers

2.2 Step 2 — Transform into a stack transformer

The next step 1s to transform the evaluation function into a version that utilises a stack,

2.3 Step 3 — Transform into continuation-passing style

evals,
given

— | we ref

(the continuation) as an additional argument, which 1s used to process the stack that results
typ from evaluating the expression. More precisely, if we define a type for continuations

In this
we de{ thenw type Cont = Stack — Stack

level s : :
falling eva then we seek to derive a function
dlll

T"l““[i' such th evalc :: Expr — Cont — Cont
anguy

forms such that:

calcul:

sl The or evalc xcs = ¢ (evale x 5) (2)

6. Generalized composition

Generalize composition to propagate multiple arguments:

b"gf

b gf
b" 1gf

X1:::X% ¥ g X1 X%

gf
x T b"gfx

Deriving Target Code as a Representation
of Continuation Semantics

MITCHELL WAND
Indiana University

Reynolds’ technique for deriving interpreters is extended to derive compilers from continuation
semantics. The technique starts by eliminating A-variables from the semantic equations through the
introduction of special-purpose combinators. The semantics of a program phrase may be represented
by a term built from these combinators. Then associative and distributive laws are used to simplify
the terms. Last, a machine is built to interpret the simplified terms as the functions they represent.
The combinators reappear as the instructions of this machine. The technique is illustrated with three
examples.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and
Theory—semantics; D.3.4 [Programming Languages]: Processors—code generation; compilers;
F.3.2 [Logics and Meanings of Programs): Semantics of Programming Languages—denotational
semantics; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic—lambda
calculus and related systems

General Terms: Languages, Theory
Additional Key Words and Phrases: Continuations, combinators

1. INTRODUCTION

In this paper, we attack the question of how a denotational semantics for a
language is related to an implementation of that language. Typically, one con-
structs the semantics of a target machine and of a (suitably abstract) compiler
and proves a congruence between the two different semantics [12].

Our approach is quite different. Starting with a continuation semantics for the
source language, we construct, via a series of transformations and representation
decisions, a target machine and a compiler. A typical semantics has functionality

Implementing generalized composition
Arities:

type family Arrow as: Type b:Type where
Arrow ’ b b

Arrow a%as b a ! Arrowasb
€9
Arrow ? Char;Bool String Char ¥ Bool ¥ String
Then we can define
b:: b¥c ¥ Arrowasb ¥ Arrow asc

(roughly...)

CPS etc

Installing

Recall:

eval, e eval% e id
eva@zljtr1 k T kn
eval, Diff e €° k Tevalye mUYevalse® n¥Tk m n

CPS etc

Installing
Recall:
eval, e eval% e halt
evalg Lit n ret n
eval, Diff e €° k ¥ evalye m1

where for later convenience we introduce;:

halt id
ret n k T kn
sub KkmnIk m n

eval) e

NnNYsubkmn

24

CPS etc

Installing
Recall:
eval, e eval% e halt
evalg Lit n ret n
eval, Diff e e’ k Tevalbe mUYevalye® n¥subkmn
Then:
eval), Diff e e°
definition
k Tevaloe mUYeval,e® n ¥ submkn
since k1 g fk isbtg k1Ifk
bl evalbe kmUTevalye® n¥subkmn
since km¥g fkm isb’°g km?t fkm
bl evalie b2 evalle® sub

24

CPS etc

An equivalent evaluator

Rewrite the Diff case of eval:

evals :: Expr ¥ Integer
evals e eval% e halt where

eval%::Expr ¥ Integer Y Integer ¥ Integer

eval?3 Lit n ret n
eval, Diff ee” bl evalye

b2 eval e sub

25

Tree-shaped code

data ExprRepg :: Type ¥ Type where

Retg :: Integer 1 ExprRepg °
Subg :: ExprRepg ° Integer; Integer
B: < ExprRepg? 1

ExprRepg ? Integer ¥ ExprRepg °

B :ExprRepg? 1
ExprRepg Integer;Integer ¥ ExprRepg’ Integer

Type index denotes what extra values are needed to complete evaluation.

CPS etc

Representation and interpretation

repg - Expr ¥ ExprRepg ’

repg Litn Retg n

repg Diff ee® B repge BE repg e’ Subg

absg :: EXprRepg r ¥ Integer ¥ Integer ¥ Arrow r Integer
absg Retg n ret n

absg Subg sub

absg Bixy bl absgx absgy

absg BExy b? absgx absgy

But still tree-shaped

Bl
Bl/ \52
/ \ / N\
Ret B2 Ret Sub
/ / \ /
3 Ret Sub 5

3

bl

bl/ \bz

/ N\ / \
ret b2 ret sub
// \ /

ret sub 5

/
A

CPS etc

/. Associativity

Generalized composition is (of course!) (pseudo-)associative:

«— X1 X1
f
«— Xr Xr
Xr 1 Xr 1
: all :
Xr s Xr s

ieb” b®thg f b" Sh b"gf . Hence rotate tree-shaped code to linear.

29

Rotating

evals expr

definition of evals, eval%; b® is application

bl bl ret3 b? ret4 sub b? ret5 sub halt
pseudo-associativity: b°® bthg f b°h b%gf
bl ret3 b? ret4 sub b° b? ret5 sub halt
pseudo-associativity: b°® bthg f b°h b%gf
ret3 b® b? ret4 sub b° b? ret5 sub halt
pseudo-associativity: b° b?hg f blh bPgf
ret3 bl ret4 bPsub b b? ret5 sub halt
pseudo-associativity: b° b?hg f blh bPgf
ret3 bl ret4 bP%sub bl ret5 bsub halt

CPS etc

Linear code

data ExprRep-, :: Type ¥ Type where
Halt; : ExprRep- ° Integer
BRet; :: Integer 1
ExprRep- Integer %:r ¥ ExprRep-r
BSub- :: ExprRep- Integer %:r ¥ ExprRep-, Integer’:Integer®:r

31

CPS etc

Representation and interpretation

rep- :: Expr ¥ ExprRep- "’
rep, Litn BRet, n Halt-
rep, Diff e ¢’ append rep,e append rep- e’

abs; ;. ExprRep, r ¥ Arrow r Integer
abs; Halt- halt

abs; BRet; n k ret n abs; k
abs; BSub-7 k flip sub abs; k

(note flipping subtraction), where. . .

BSub-; Halt-

32

Concatenating code

Appending type-level lists:

type family Append as:. Type bs: Type : Type
where
Append ’ bs bs
Append a'as bs a’ Append as bs

and appending linear programs:

append :: ExprRep-, r ¥ ExprRep- Integer s ¥ ExprRep, Appendr s
append Halt; y y

append BRet;nk y BRet;n appendky

append BSub; k vy BSub; append ky

No longer tree-shaped

BRet~,

/ \
3 BRety

/ \
4 BSUb7

BRet~
/ \
5 BSUb7

Halt7

bO
/ N\

ret bl

/) \
3 ret bHO

abi7 / / \
4 sub bt
/ \

ret Db°

/ /N
5 sub halt

CPS etc

This 1s where the compiler comes from!

compile, :: Expr ¥ Instr

compile; compileRep,; rep, where
compileRep- :: ExprRep, r ¥ Instr
compileRep-, Halt-
compileRep, BRet; n k Pushl n:compileRep- k
compileRep; BSub7 k Subl : compileRep- k

Indeed:

compile-, expr Pushl 3;Pushl 4; Subl;Pushl 5; Subl

35

8. Conclusion

e accumulating parameters

e continuation-passing style and defunctionalization

e Reynolds, Danvy: recursive interpreter ~ tail-recursive abstract mac

e many other applications: fast reverse, traversals, zippers...

e but there’s usually an appeal to associativity there too

Definitional Interpreters for Higher-Order Programming Languages

John C. Reynolds, Syracuse University

A Functional Correspondence
between Evaluators and Abstract Machines

Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard
BRICS*
Department of Computer Science
University of Aarhus ™

Higher-order programming languages (i.e.,
languages in which procedures or labels
can occur as values) are usually defined
by interpreters which are themselves
written in a programming language based
on the lambda calculus (i.e., an
applicative language such as pure LISP).
Examples include McCarthy's definition
of LISP, Landin's SECD machine, the
Vienna definition of PL/I, Reynolds'
definitions of GEDANKEN, and recent
unpublished work by L. Morris and

C. Wadsworth. Such definitions can be
classified according to whether the

INTRODUCTION

An important and frequently used
method of defining a programming language
is to give an interpreter for the language
which is written in a second, hopefully
better understood language. (We will
call these two languages the defined
and defining languages, respectively.)

In this paper, we will describe and
classify several varieties of such
interpreters, and show how they may be
derived from one another by informal but
constructive methods. Althouah our

Abstract

and abstract ma-
on, transformation
ng style, and defunctionalization.

We bridge the gap between functional evaluator:
chines for the A-calculus, using closure convers
into continuation-p:

We illustrate this approach by deriving Krivine's abstract machine
from an ordinary call-by-name evaluator and by deriving an ordi-
nary call-by-value evaluator from Felleisen et al’s CEK machine.
The first derivation is strikingly simpler than what can be found in
the literature. The second one is new. Together, they show that
Krivine's abstract machine and the CEK machine correspond to the

1 Introduction and related work

In Hannan and Miller’s words [23, Section 7], there are fundamen-
tal differences between denotational definitions and definitions of
abstract machines. While a functional programmer tends to be
familiar with denotational definitions [36], he typically wonders
about the following issues:

Design: How does one design an abstract machine? How were
existing abstract machines, starting with Landin’s SECD ma-
chine, designed? How does one make variants of an existing
abstract machine? How does one extend an existing abstract

INne

