
Servant vs. Mu
A Type-Level Battle
Alejandro Serrano @ BOB 2021

🐦 @trupill - � 47 Degrees (Academy)

Servant and Mu

Sets of libraries to develop services in Haskell

1 / 52

Servant and Mu

Sets of libraries to develop services in Haskell

🤖 Servant - servant.dev

Focus on web services: REST, OpenAPI
Both client and server

2 / 52

Servant and Mu

Sets of libraries to develop services in Haskell

🤖 Servant - servant.dev

Focus on web services: REST, OpenAPI
Both client and server

 Mu - higherkindness.io/mu

Microservices, multi-protocol: gRPC, GraphQL
Preceded by a Scala sibling

3 / 52

Why compare them?

Focus on a similar tech space

Choices for developing microservices
Even more when the protocol is still in �ux

4 / 52

Why compare them?

Focus on a similar tech space

Choices for developing microservices
Even more when the protocol is still in �ux

Both use type-level techniques

Using lots of GHC extensions, and some more

Interesting exploration of the design space
How much of this is exposed to the user?

5 / 52

� Disclaimer
I am one of the core developers of Mu

🤖 Servant - servant.dev

Your API as a type

type UserAPI
 = "users" :> Get '[JSON] [User]
 :��� "user" :> Capture "user_id" Int
 :> Get '[JSON] User

de�nes your API as two routes

GET /users
GET /user/:user_id

8 / 52

Serving the API

type UserAPI
 = "users" :> Get '[JSON] [User]
 :��� "user" :> Capture "user_id" Int
 :> Get '[JSON] User

You provide a Handler per route

server �� Server UserAPI
server = users :��� user
 where users �� Handler [User]
 users = ���
 user �� Int �� Handler User
 user user_id = ���

9 / 52

 Serving the API

server �� Server UserAPI
server = users :��� user
 where users �� Handler [User]
 users = ���
 user �� Int �� Handler User
 user user_id = ���

Handler extends IO with the ability to stop

type Handler = ExceptT ServerError IO

10 / 52

 Serving the API

server �� Server UserAPI
server = users :��� user
 where users �� Handler [User]
 users = ���
 user �� Int �� Handler User
 user user_id = ���

Serialization is handled by the library

From string to Int in a URL part
Using Aeson's ToJSON for User

11 / 52

Querying the API

type UserAPI
 = "users" :> Get '[JSON] [User]
 :��� "user" :> Capture "user_id" Int
 :> Get '[JSON] User

Client code is automatically derived

users �� ClientM [User]
user �� Int �� ClientM User

users :��� user = client (Proxy @UserAPI)

12 / 52

 Mu - higherkindness.io/mu

gRPC service de�nition

This is helloworld.proto ,
using Protocol Buffers syntax

package helloworld;

message HelloRequest { string name = 1; }
message HelloReply { string message = 1; }

service Greeter {
 rpc SayHello (HelloRequest)
 returns (HelloReply) {}
 rpc SayManyHellos (stream HelloRequest)
 returns (stream HelloReply) {}
}

14 / 52

Import the service de�nition

{-# language TemplateHaskell #-}

grpc "Schema" (const "Service") "helloworld.proto"

15 / 52

Import the service de�nition

{-# language TemplateHaskell #-}

grpc "Schema" (const "Service") "helloworld.proto"

Messages may be mapped to Haskell types

data HelloRequestMessage = Req { name �� T.Text }
 deriving (Eq, Show, Generic
 , ToSchema Schema "HelloRequest"
 , FromSchema Schema "HelloRequest")

data HelloReplyMessage = Reply { message �� T.Text }
 deriving (Eq, Show, Generic
 , ToSchema Schema "HelloReply"
 , FromSchema Schema "HelloReply")

16 / 52

De�ne the server

server = singleService
 (method @"SayHello" sayHello
 , method @"SayManyHellos" sayManyHellos)
 where
 sayHello
 �� HelloRequest �� ServerErrorIO HelloResponse
 sayHello (HelloRequest nm)
 = pure $ HelloResponse ("hi, " �� nm)

 sayManyHellos
 �� ConduitT () HelloRequest m ()
 �� ConduitT HelloResponse Void m ()
 �� ServerErrorIO ()
 sayManyHellos = ���

17 / 52

 One server, many protocols

The same server can be exposed through
different interfaces, if compatible

runConcurrently $ (_ _ _ �� ())
 ��� c 50051 (gRpcApp msgProtoBuf server)
 ��� c 50052 (gRpcApp msgAvro server)
 ��� c 50053 (graphQLApp server (Proxy @���))
 where c port f = Concurrently (run port f)

18 / 52

⚔ Let the battle begin!

Focus #1: server de�nition
Focus #2: serialization
Focus #3: API representation

⚔ Focus #1: server de�nition

🤖 The "handler monad"

Both libraries use simple functions

arguments represent the inputs

user �� Int �� Handler User
user user_id = ���

execute inside a similar monad

type Handler = ExceptT ServerError IO

21 / 52

🤖 The "handler monad"

type Handler = ExceptT ServerError IO

From the Servant docs:

[...] it is the simplest monad that:

lets us both return a successful result (using
return) or “fail” with an error (using throwError);
lets us perform IO, which is absolutely vital since
most webservices exist as interfaces to databases
that we interact with in IO .

22 / 52

🤖 Escaping out of the monad

Using a natural transformation
forall x. f x �� g x

hoistServer
 �� HasServer api '[] �� Proxy api
 �� (forall x. m x �� n x)
 �� ServerT api m �� ServerT api n

runGRpcAppTrans
 �� (���) �� Proxy protocol �� Port
 �� (forall a. m a �� ServerErrorIO a)
 �� ServerT chn () pkg m handlers �� IO ()

23 / 52

 🤖 Handlers in order

Handlers in Servant must appear in the same
order as they are de�ned

type UserAPI
 = "users" :> Get '[JSON] [User]
 :��� "user" :> Capture "user_id" Int
 :> Get '[JSON] User

server �� Server UserAPI
server = users :��� user

24 / 52

 Handlers out of order

Use special functions and type-level strings to
�gure everything out

server = singleService
 (method @"SayHello" sayHello
 , method @"SayManyHellos" sayManyHellos)

25 / 52

 Handlers out of order

Use special functions and type-level strings to
�gure everything out

server = singleService
 (method @"SayHello" sayHello
 , method @"SayManyHellos" sayManyHellos)

Internally, this is translated to Servant-style

Do the "matching" only once at compile-time

26 / 52

🤖 ⚔ Handler order: comparison

27 / 52

🤖 ⚔ Handler order: comparison

 🤖 Declaration order

👍 Compile time is decreased

👎 Change in the API ⇒ less than trivial error

28 / 52

🤖 ⚔ Handler order: comparison

 🤖 Declaration order

👍 Compile time is decreased

👎 Change in the API ⇒ less than trivial error

 Out of order, tagged with names

👍 Readability of the server

🤏 Duplication of names in schema and code

👎 Misuse of combinators ⇒ terrible error
29 / 52

⚔ Focus #2: serialization

 🤖 Serialization

User perspective

(Re)use different classes per content type

From/ToHttpApiData for text in URLs
From/ToJSON (from Aeson) for JSON

31 / 52

 🤖 Serialization

Linking them together

Via the MimeRender class and type-level names

class MimeRender ctype a where
 mimeRender
 �� Proxy ctype �� a �� ByteString

data JSON �� empty data type
instance ToJSON a �� MimeRender JSON a ���

32 / 52

 Serialization

Use of an intermediate Term data type

33 / 52

 Serialization

Conversion is automatized using GHC.Generics

data SchemaType = ���
 deriving (Eq, Show, Generic
 , ToSchema Schema "SchemaType"
 , FromSchema Schema "SchemaType")

34 / 52

 Serialization

Conversion is automatized using GHC.Generics

data SchemaType = ���
 deriving (Eq, Show, Generic
 , ToSchema Schema "SchemaType"
 , FromSchema Schema "SchemaType")

🙈 mu�schema is yet another generics library

35 / 52

🤖 ⚔ Serialization: comparison

🤖 Need to manually derive each content type
 Only a single From/ToSchema is required

36 / 52

🤖 ⚔ Serialization: comparison

🤖 Need to manually derive each content type
 Only a single From/ToSchema is required

 Does one size �t all?

👍 No (user) code to move to another protocol

👎 Lack of con�gurability (e.g., JSON keys)

👎 The Term data type is a "Frankenstein"
(some protocols support unions, others not...)

37 / 52

 🤖 HTML as the content type

Servant has integrations to produce HTML,
a common output of a web service

servant�lucid

servant�blaze

Mu only focuses on data-returning services

38 / 52

⚔ Focus #3: API representation

 🤖 Type as an API

The programmer writes the type manually

type UserAPI
 = "users" :> Get '[JSON] [User]
 :��� "user" :> Capture "user_id" Int
 :> Get '[JSON] User

40 / 52

 🤖 Type as an API

The programmer writes the type manually

type UserAPI
 = "users" :> Get '[JSON] [User]
 :��� "user" :> Capture "user_id" Int
 :> Get '[JSON] User

👍 Easy to understand

👎 Dif�cult to share, you need packages such
as servant�js/elm to create clients

41 / 52

 Import the service de�nition

{-# language TemplateHaskell #-}

grpc "Schema" (const "Service") "helloworld.proto"

42 / 52

 Import the service de�nition

{-# language TemplateHaskell #-}

grpc "Schema" (const "Service") "helloworld.proto"

which results in schema de�nitions...

type QuickstartSchema
 = '['DRecord "HelloRequest"
 '['FieldDef "name" ('TPrimitive T.Text)]
 , 'DRecord "HelloResponse"
 '['FieldDef "message" ('TPrimitive T.Text)]]

type instance AnnotatedSchema ProtoBufAnnotation QuickstartSchema
 = '['AnnField "HelloRequest" "name" ('ProtoBufId 1)
 , 'AnnField "HelloResponse" "message" ('ProtoBufId 1)]

43 / 52

 Import the service de�nition

{-# language TemplateHaskell #-}

grpc "Schema" (const "Service") "helloworld.proto"

... and service de�nitions

type QuickstartService
 = 'Service "Greeter"
 '['Method "SayHello" '[]
 '['ArgSingle 'Nothing '[]
 ('FromSchema QuickstartSchema "HelloRequest")]
 ('RetSingle ('FromSchema QuickstartSchema "HelloResponse"))]

Way more complex than Servant!
44 / 52

 Schema-�rst

👍 Better for sharing across teams

Well-established gRPC and GraphQL clients

👍 The schema/service de�nition API is hidden

We have changed it in every major release
without changes to the examples

👎 Inspectability and error reporting

45 / 52

🤖 ⚔ Single vs. multi-protocol

🤖 Focus on HTTP-oriented protocols
 The same code for different protocols

46 / 52

🤖 ⚔ Single vs. multi-protocol

🤖 Focus on HTTP-oriented protocols
 The same code for different protocols

 Does one size �t all?

👍 No (user) code to move to another protocol

👎 Hard to diagnose when this is not possible

RPC protocols differ way more than
serialization formats

47 / 52

🤖 🤝
Bridging both worlds
mu�servant�server

🤖 🤝 mu�servant�server

Expose a Mu server as a Servant one

Use the annotations machinery in Mu
to "�ll the gaps" about routes

type instance AnnotatedPackage ServantRoute Service
 = '['AnnService "Greeter"
 ('ServantTopLevelRoute '["greet"])
 , 'AnnMethod "Greeter" "SayHello"
 ('ServantRoute '["say", "hello"] 'POST 200)
]

49 / 52

🤖 🤝 mu�servant�server

Expose a Mu server as a Servant one

A type family creates a Servant API type
looking up those annotations

PackageAPI Service handlers

The instances de�ne what can be translated

Right now, only one argument in the body

50 / 52

🤖 🤝 mu�servant�server

Expose a Mu server as a Servant one

Help us bridging both worlds!

Import OpenAPI de�nitions in Mu
Support more complex Servant routes

51 / 52

🤩 It's been a pleasure
Enjoy the rest of BOB 2021!

