Getting recursive definitions off their bottoms

Joachim @nomeata Breitner

March 17, 2023
BOB, Berlin

Let's tie a knot!

A famous example

```
fibs :: [Integer]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
```


A famous example

```
fibs :: [Integer]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
```


A programming puzzle

import qualified Data.Map as M
type Graph = M.Map Int [Int]
transitive :: Graph -> Graph
transitive g = ...

Let's step through it

transitive graph1
graph1 = M.fromList [(1,[3]),(2,[1,3]),(3,[])]
transitive $\mathrm{g}=\mathrm{M}$. map S.toList reaches

where

```
reaches = M.mapWithKey f g
f v vs = S.insert v (S.unions [ reaches M.! v' | v' <- vs ]))
```


Let's step through it

M.map S.toList reaches
where

$$
\begin{aligned}
& \text { reaches }=\text { M.mapWithKey f g } \\
& f \text { v vs = S.insert v (S.unions [reaches M.! v' | v' <- vs])) } \\
& g=M . \text { fromList }[(1,[3]),(2,[1,3]),(3,[])]
\end{aligned}
$$

Let's step through it

M.map S.toList reaches
where

```
reaches = M.mapWithKey f (M.fromList [(1,[3]),(2,[1,3]),(3,[] )])
f v vs = S.insert v (S.unions [ reaches M.! v' | v' <- vs ]))
```


Let's step through it

M.map S.toList reaches

where

$$
\begin{aligned}
& \text { reaches }=\text { M.fromList }[(1, f 1[3]),(2, f 2[1,3]),(3, f 3[])] \\
& \left.f v \text { vs }=\text { S.insert } v\left(S . u n i o n s\left[\text { reaches } M .!v^{\prime} \mid v^{\prime}<- \text { vs }\right]\right)\right)
\end{aligned}
$$

Let's step through it

M.map S.toList reaches
where

$$
\begin{aligned}
& \text { reaches }=\text { M.fromList }[(1, s 1),(2, s 2),(3, s 3)] \\
& \left.\left.f v \text { vs }=\text { S.insert v (S.unions }\left[\text { reaches } M .!v^{\prime} \mid v^{\prime}<- \text { vs }\right]\right)\right) \\
& s 1=f 1[3] \\
& \text { s2 }=\mathrm{f} 2[1,3] \\
& \text { s3 }=\mathrm{f} 3[]
\end{aligned}
$$

Let's step through it

M.map S.toList reaches
where

```
reaches = M.fromList [(1,s1),(2,s2),(3,s3)]
s1 = S.insert 1 (S.unions [ reaches M.! v' | v' <- [3] ])
s2 = S.insert 2 (S.unions [ reaches M.! v' | v' <- [1,3] ])
s3 = S.insert 3 (S.unions [ reaches M.! v' | v' <- [] ])
```


Let's step through it

M.map S.toList reaches
where

```
reaches = M.fromList [(1,s1),(2,s2),(3,s3)]
s1 = S.insert 1 (S.unions [ reaches M.! 3 ])
    s2 = S.insert 2 (S.unions [ reaches M.! 1, reaches M.! 3 ])
    s3 = S.insert 3 (S.unions [] )
```


Let's step through it

M.map S.toList reaches
where

```
reaches = M.fromList [(1,s1),(2,s2),(3,s3)]
s1 = S.insert 1 (S.unions [ s3 ])
    s2 = S.insert 2 (S.unions [ s1, s3 ])
    s3 = S.insert 3 (S.unions [] )
```


Let's step through it

M.map S.toList reaches
where

```
reaches = M.fromList [(1,s1),(2,s2),(3,s3)]
s1 = S.insert 1 (S.unions [ s3 ])
    s2 = S.insert 2 (S.unions [ s1, s3 ])
    s3 = S.fromList [3]
```


Let's step through it

M.map S.toList reaches
where

```
reaches = M.fromList [(1,s1),(2,s2),(3,s3)]
s1 = S.fromList [1,3]
    s2 = S.insert 2 (S.unions [ s1, s3 ])
    s3 = S.fromList [3]
```


Let's step through it

M.map S.toList reaches
where

```
reaches = M.fromList [(1,s1),(2,s2),(3,s3)]
s1 = S.fromList [1,3]
    s2 = S.fromList [1,2,3]
    s3 = S.fromList [3]
```


So far so good. . .

A vicious cycle

transitive graph2
graph2 $=$ M.fromList $[(1,[2,3]),(2,[1,2,3]),(3,[3])]$
transitive $\mathrm{g}=\mathrm{M}$. map S.toList reaches

where

```
reaches = M.mapWithKey f g
    f v vs = S.insert v (S.unions [ reaches M.! v' | v' <- vs ]))
```


A vicious cycle

M.map S.toList reaches
where

```
reaches = M.fromList [(1,s1),(2,s2),(3,s3)]
s1 = S.insert 1 (S.unions [ s2, s3 ])
    s2 = S.insert 2 (S.unions [ s1, s3 ])
    s3 = S.insert 3 (S.unions [] )
```


A vicious cycle

$\$$ M.map S.toList reaches
where

```
reaches = M.fromList [(1,s1),(2,s2),(3,s3)]
s1 = S.insert 1 (S.unions [ s2, s3 ])
s2 = S.insert 2 (S.unions [ s1, s3 ])
    s3 = S.insert 3 (S.unions [] )
```

This does not work ... could it?

The set API

import Data.Set as S
7 data Set a
S.insert :: Ord a => a -> Set a -> Set a
S.unions : Ord a => [Set a] -> Set a

The set API

1 import Data.Set as S
data Set a
S.insert :: Ord a => a -> Set a -> Set a
S.unions :: Ord a => [Set a] -> Set a
import Data.Recursive.Set as RS
data RSet a
RS.insert :: Ord a => a -> RSet a -> RSet a
RS.unions :: Ord a => [RSet a] -> RSet a
RS.get :: RSet a -> Set a

The set API

1 import Data.Set as S
data Set a
S.insert :: Ord a => a -> Set a -> Set a
S.unions :: Ord a => [Set a] -> Set a
import Data.Recursive.Set as RS
data RSet a
RS.insert :: Ord a => a -> RSet a -> RSet a
RS.unions :: Ord a => [RSet a] -> RSet a
RS.get :: RSet a -> Set a

Let's try!

https://hackage.haskell.org/package/rec-def

Solves every set of equations!

Solves every set of equations!

... because we do not have:
RS.difference :: Ord a => RSet a -> RSet a -> RSet a
RB.not
:: RBool -> RBool

So how does it work?

Breaking down the problem

1. A monadic "propagator" (declare cells, declare relationships, solves, read values)
2. The pure wrapping
3. Some issues we gloss over today

Breaking down the problem

1. A monadic "propagator"
(declare cells, declare relationships, solves, read values)
2. The pure wrapping
3. Some issues we gloss over today

Our (simplified) goal:
data RSet a
insert :: a -> RSet a -> RSet a
get :: RSet a -> Set a

The propagator - the API

data Cell a
newC $:$: IO (Cell a)
insertC : Ord a => Cell a -> a -> Cell a -> IO ()
getC :: Cell a -> IO (Set a)

The propagator - a naive(!) implementation

```
data Cell a = C (IORef (Set a)) (IORef [IO ()])
    :: IO (Cell a)
    newC = C <$> newIORef S.empty <*> newIORef []
    insertC :: Ord a => Cell a -> a -> Cell a -> IO ()
    insertC (C s0 ws0) x (C s1 ws1) = do
        let update = do
            new <- S.insert x <$> readIORef s1
            old <- readIORef s0
            unless (old == new) $ do
                writeIORef s0 new
                readIORef ws0 >>= sequence_
    modifyIORef wsl (update :)
    update
    getC :: Cell a -> IO (Set a)
    getC (C s1 _) = readIORef sl
```


The pure wrapper - the API

data RSet a
insert :: Ord a => a -> RSet a -> RSet a
get :: RSet a -> Set a

The pure wrapper - let's get dirty

unsafePerformIO :: IO a -> a

A thunking data structure

data DoOnce
later: IO () -> IO DoOnce
doNow :: DoOnce -> IO ()

A thunking data structure

```
data DoOnce = DoOnce (IO ()) (IORef Bool)
```

```
later:: IO () -> IO DoOnce
```

later act $=$ DoOnce act <\$> newIORef False
doNow :: DoOnce -> IO ()
doNow (DoOnce act done) $=$ do
is_done <- readIORef done
unless is_done \$ do
writeIORef done True
act

The pure wrapper - a naive(!) implementation

```
data RSet a = RSet (Cell a) DoOnce
insert :: Ord a m a -> RSet a -> RSet a
insert x r2 = unsafePerformI0 $ do
    cl <- newC
    todo <- later $ do
        let (RSet c2 todo2) = r2
        insertC c1 x c2
        doNow todo2
        return (RSet c1 todo)
get :: RSet a -> Set a
get (RSet c todo) = unsafePerformIO $ do
    doNow todo >> getC c
```


Simplified for your viewing pleasure

- Other data types

RBool with (RB. \&\&) etc.

- Mixing different data types

$$
\text { RS.member : : Ord a }=>\text { a }->\text { RSet a }->\text { RBool }
$$

- Concurrency and reentrancy issues (unsafePerformio!)
- Space leaks (watchers!)

Is this still Haskell?

Queasy about unsafePerformIO?

that is why the function is unsafe. However "unsafe" is not the same as "wrong". It simply means that the programmer, not the compiler, must undertake the proof obligation that the program's semantics is unaffected [...]
"Stretching the Storage Manager: Weak Pointers and Stable Names in Haskell" Simon Peyton Jones, Simon Marlow, and Conal Elliott

Is this still Haskell?

- Type safety \checkmark
- Independence of evaluation order \checkmark
(At least if the ascending chain conditions holds, else unclear.)
- Equational reasoning $\sqrt{ }$

$$
\begin{aligned}
\text { let } x=E 1[x] & \text { in } E 2[x] \\
\text { let } x=E 1[x] \text { in } E 2[x] & \equiv \text { let } x=E 1[x] \text { in } E 2[E 1[x]] \\
& \text { let } x=E 1[y] ; y=E 1[x] \text { in } E 2[x]
\end{aligned}
$$

Is this still Haskell?

- Type safety
- Independence of evaluation order
(At least if the ascending chain conditions holds, else unclear.)
- Equational reasoning $\sqrt{ }$

$$
\begin{aligned}
& \text { let } x=E 1[x] \text { in } E 2[x] \\
& \text { let } x=E 1[x] \text { in } E 2[x] \equiv \text { let } x=E 1[x] \text { in } E 2[E 1[x]] \\
& \text { let } x=E 1[y] ; y=E 1[x] \text { in } E 2[x]
\end{aligned}
$$

- Lambda lifting x
let $x=E 1[x, e]$ in $E 2[x] \not \equiv$ let $x y=E 1[x y, y]$ in $E 2[x e]$
Transformations that break sharing can prevent termination! (So far: can only increase costs, but otherwise unobservable)

Is this still Haskell?

- Type safety
- Independence of evaluation order
(At least if the ascending chain conditions holds, else unclear.)
- Equational reasoning \checkmark

$$
\begin{aligned}
\text { let } x=E 1[x] & \text { in } E 2[x] \\
\text { let } x=E 1[x] \text { in } E 2[x] & \equiv \text { let } x=E 1[x] \text { in } E 2[E 1[x]] \\
& \text { let } x=E 1[y] ; y=E 1[x] \text { in } E 2[x]
\end{aligned}
$$

- Lambda lifting X
let $x=E 1[x, e]$ in $E 2[x] \not \equiv$ let $x y=E 1[x y, y]$ in $E 2[x e]$
Transformations that break sharing can prevent termination! (So far: can only increase costs, but otherwise unobservable)
... and how to prove it?

Summary

- Laziness is key to describing recursive problems declaratively.
- Let us allow more partial orders than Haskell's "normal one"!
- Open question: Is this still pure, and how to prove it?
- Not discussed today:

The let $\mathrm{x}=\mathrm{x}$ problem, thread safety, avoiding leaks, performance.

Thank you for your attention!

Backup slides

Theory

All involved functions must be monotone

$$
\text { If } s_{1} \subseteq s_{2} \text { then } f\left(s_{1}\right) \subseteq f\left(s_{2}\right) \text {. }
$$

For Bool:

If $b_{1} \leq b_{2}$ then $f\left(b_{1}\right) \leq f\left(b_{2}\right)$.
where False \leq True.

Finding the least fixed-point

Let X be partially ordered by $\sqsubseteq, ~ \perp \in X$ be its least element, and $f: X \rightarrow X$ be a continuous function (i.e. $x \sqsubseteq y \Longrightarrow f(x) \sqsubseteq f(y))$.

Finding the least fixed-point

Let X be partially ordered by $\sqsubseteq, ~ \perp \in X$ be its least element, and $f: X \rightarrow X$ be a continuous function (i.e. $x \sqsubseteq y \Longrightarrow f(x) \sqsubseteq f(y))$.
Then the sequence

$$
\perp \sqsubseteq f(\perp) \sqsubseteq f(f(\perp)) \sqsubseteq \ldots
$$

either diverges (all elements are different), or eventually finds a least fixed-point $x \in X$ of f, where

$$
x=f(x) .
$$

Finding the least fixed-point

Let X be partially ordered by $\sqsubseteq, ~ \perp \in X$ be its least element, and $f: X \rightarrow X$ be a continuous function (i.e. $x \sqsubseteq y \Longrightarrow f(x) \sqsubseteq f(y))$.

Then the sequence

$$
\perp \sqsubseteq f(\perp) \sqsubseteq f(f(\perp)) \sqsubseteq \ldots
$$

either diverges (all elements are different), or eventually finds a least fixed-point $x \in X$ of f, where

$$
x=f(x)
$$

If X has the Ascending Chain Condition (i.e. no infinite chain $x_{0} \llbracket x_{1} \sqsubset \ldots$ exists), then the fixed-point will always be found.

It worked!
Let's try another example. . .

A small programming language

type Var $=$ String
data Exp
$=$ Var Var
| Lam Var Exp
| App Exp Exp
| Throw
| Catch Exp
| Let Var Exp Exp

A small analysis

canThrowl : : Exp -> Bool
canThrow1 = go M.empty where

```
go :: M.Map Var Bool -> Exp -> Bool
go env (Var v) = env M.! v
go env Throw = True
    go env (Catch e) = False
    go env (Lam v e) = go (M.insert v False env) e
    go env (App e1 e2) = go env e1 || go env e2
    go env (Let v el e2) = go env' e2 where
        env_bind = M.fromList [ (v, go env el) ]
```

 env' = M.union env_bind env

Let's add recursion

Let's add recursion

data Exp

1 LetRec [(Var, Exp)] Exp
canThrow1 :: Exp $->$ Bool
canThrow1 = go M.empty where
go :: M.Map Var Bool -> Exp -> Bool
go env (LetRec binds e) = go env' e where env_bind $=$ M.fromList $[(v$, go env' e) $\mid(v, e)<-$ binds $]$ env' = M.union env_bind env

Let's add recursion

data Exp

1 LetRec [(Var, Exp)] Exp
canThrow1 :: Exp $->$ Bool
canThrow1 = go M.empty where
go :: M.Map Var Bool -> Exp -> Bool
go env (LetRec binds e) = go env' e where env_bind $=$ M.fromList $[(v$, go env' e) $\mid(v, e)<-$ binds] env' = M.union env_bind env

Again, this fails with cyclic values

```
                someVal = Lam "y" (Var "y")
```

prog = LetRec [("x", App (Var "x") someVal), ("y", Throw)] (Var "x")

CInter rupted.

Data.Recursive.Bool to the rescue!

```
someVal = Lam "y" (Var "y")
```

prog $=$ LetRec [("x", App (Var "x") someVal), ("y", Throw)] (Var "x")
^CInterrupted.
$\lambda>$ canThrow2 prog
False

Data.Recursive.Bool API

import Data.Recursive.Bool as RB

RB.true : RBool
RB.false : : RBool
RB.\&\& : RBool -> RBool -> RBool
RB.|| :: RBool \rightarrow RBool -> RBool
RB.and : [RBool] \rightarrow RBool
RB.or :: [RBool] -> RBool

RB.get : : RBool -> Bool

JFR: The full code

canThrow2 : Exp \rightarrow Bool
canThrow2 = RB.get . go M.empty where
go :: M. Map Var RBool $->$ Exp \rightarrow RBool
go env (Var v) = env M.! v
go env Throw $\quad=$ RB.false
go env (Catch e) $=$ RB.true
go env (Lam ve) = go (M.insert \vee RB.false env)
go env (App e1 e2) = go env e1 RB. $\|$ go env e2
go env (Let v el e2) $=$ go env' e2 where env_bind $=$ M.singleton $v($ go env el) env' = M.union env_bind env
go env (LetRec binds e) = go env' e where env_bind $=$ M.fromList $[(v$, go env' e) $\mid(v, e)<-$ binds $]$
env' = M.union env_bind env

