
Getting recursive definitions off their bottoms

Joachim @nomeata Breitner

March 17, 2023
BOB, Berlin

Let’s tie a knot!

A famous example

fibs :: [Integer]

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

3

A famous example

fibs :: [Integer]

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

3

A programming puzzle

import qualified Data.Map as M

type Graph = M.Map Int [Int]

transitive :: Graph -> Graph

transitive g = ...

4

Let’s step through it

transitive graph1

graph1 = M.fromList [(1,[3]),(2,[1,3]),(3,[])]

transitive g = M.map S.toList reaches

where

reaches = M.mapWithKey f g

f v vs = S.insert v (S.unions [reaches M.! v’ | v’ <- vs]))

5

Let’s step through it

M.map S.toList reaches

where

reaches = M.mapWithKey f g

f v vs = S.insert v (S.unions [reaches M.! v’ | v’ <- vs]))

g = M.fromList [(1,[3]),(2,[1,3]),(3,[])]

6

Let’s step through it

M.map S.toList reaches

where

reaches = M.mapWithKey f (M.fromList [(1,[3]),(2,[1,3]),(3,[])])

f v vs = S.insert v (S.unions [reaches M.! v’ | v’ <- vs]))

7

Let’s step through it

M.map S.toList reaches

where

reaches = M.fromList [(1,f 1 [3]),(2,f 2 [1,3]),(3,f 3 [])]

f v vs = S.insert v (S.unions [reaches M.! v’ | v’ <- vs]))

8

Let’s step through it

M.map S.toList reaches

where

reaches = M.fromList [(1,s1),(2,s2),(3,s3)]

f v vs = S.insert v (S.unions [reaches M.! v’ | v’ <- vs]))

s1 = f 1 [3]

s2 = f 2 [1,3]

s3 = f 3 []

9

Let’s step through it

M.map S.toList reaches

where

reaches = M.fromList [(1,s1),(2,s2),(3,s3)]

s1 = S.insert 1 (S.unions [reaches M.! v’ | v’ <- [3]])

s2 = S.insert 2 (S.unions [reaches M.! v’ | v’ <- [1,3]])

s3 = S.insert 3 (S.unions [reaches M.! v’ | v’ <- []])

10

Let’s step through it

M.map S.toList reaches

where

reaches = M.fromList [(1,s1),(2,s2),(3,s3)]

s1 = S.insert 1 (S.unions [reaches M.! 3])

s2 = S.insert 2 (S.unions [reaches M.! 1, reaches M.! 3])

s3 = S.insert 3 (S.unions [])

11

Let’s step through it

M.map S.toList reaches

where

reaches = M.fromList [(1,s1),(2,s2),(3,s3)]

s1 = S.insert 1 (S.unions [s3])

s2 = S.insert 2 (S.unions [s1, s3])

s3 = S.insert 3 (S.unions [])

12

Let’s step through it

M.map S.toList reaches

where

reaches = M.fromList [(1,s1),(2,s2),(3,s3)]

s1 = S.insert 1 (S.unions [s3])

s2 = S.insert 2 (S.unions [s1, s3])

s3 = S.fromList [3]

13

Let’s step through it

M.map S.toList reaches

where

reaches = M.fromList [(1,s1),(2,s2),(3,s3)]

s1 = S.fromList [1,3]

s2 = S.insert 2 (S.unions [s1, s3])

s3 = S.fromList [3]

14

Let’s step through it

M.map S.toList reaches

where

reaches = M.fromList [(1,s1),(2,s2),(3,s3)]

s1 = S.fromList [1,3]

s2 = S.fromList [1,2,3]

s3 = S.fromList [3]

15

So far so good. . .

16

A vicious cycle

transitive graph2

graph2 = M.fromList [(1,[2,3]),(2,[1,2,3]),(3,[3])]

transitive g = M.map S.toList reaches

where

reaches = M.mapWithKey f g

f v vs = S.insert v (S.unions [reaches M.! v’ | v’ <- vs]))

17

A vicious cycle

M.map S.toList reaches

where

reaches = M.fromList [(1,s1),(2,s2),(3,s3)]

s1 = S.insert 1 (S.unions [s2, s3])

s2 = S.insert 2 (S.unions [s1, s3])

s3 = S.insert 3 (S.unions [])

18

A vicious cycle

M.map S.toList reaches

where

reaches = M.fromList [(1,s1),(2,s2),(3,s3)]

s1 = S.insert 1 (S.unions [s2, s3])

s2 = S.insert 2 (S.unions [s1, s3])

s3 = S.insert 3 (S.unions [])

18

This does not work . . . could it?

The set API

import Data.Set as S

data Set a

S.insert :: Ord a => a -> Set a -> Set a

S.unions :: Ord a => [Set a] -> Set a

import Data.Recursive.Set as RS

data RSet a

RS.insert :: Ord a => a -> RSet a -> RSet a

RS.unions :: Ord a => [RSet a] -> RSet a

RS.get :: RSet a -> Set a

Let’s try!

19

The set API

import Data.Set as S

data Set a

S.insert :: Ord a => a -> Set a -> Set a

S.unions :: Ord a => [Set a] -> Set a

import Data.Recursive.Set as RS

data RSet a

RS.insert :: Ord a => a -> RSet a -> RSet a

RS.unions :: Ord a => [RSet a] -> RSet a

RS.get :: RSet a -> Set a

Let’s try!

19

The set API

import Data.Set as S

data Set a

S.insert :: Ord a => a -> Set a -> Set a

S.unions :: Ord a => [Set a] -> Set a

import Data.Recursive.Set as RS

data RSet a

RS.insert :: Ord a => a -> RSet a -> RSet a

RS.unions :: Ord a => [RSet a] -> RSet a

RS.get :: RSet a -> Set a

Let’s try!

19

It worked!
(And there are more examples, but not today. . .)

https://hackage.haskell.org/package/rec-def

20

https://hackage.haskell.org/package/rec-def

Solves every set of equations!

RS.mk :: Set a -> RSet a

RS.insert :: Ord a => a -> RSet a -> RSet a

RS.delete :: Ord a => a -> RSet a -> RSet a

RS.union :: Ord a => RSet a -> RSet a -> RSet a

RS.intersection :: Ord a => RSet a -> RSet a -> RSet a

RS.member :: Ord a => a -> RSet a -> RBool

RB.&& :: RBool -> RBool -> RBool

. . . because we do not have:

RS.difference :: Ord a => RSet a -> RSet a -> RSet a

RB.not :: RBool -> RBool

21

Solves every set of equations!

RS.mk :: Set a -> RSet a

RS.insert :: Ord a => a -> RSet a -> RSet a

RS.delete :: Ord a => a -> RSet a -> RSet a

RS.union :: Ord a => RSet a -> RSet a -> RSet a

RS.intersection :: Ord a => RSet a -> RSet a -> RSet a

RS.member :: Ord a => a -> RSet a -> RBool

RB.&& :: RBool -> RBool -> RBool

. . . because we do not have:

RS.difference :: Ord a => RSet a -> RSet a -> RSet a

RB.not :: RBool -> RBool

21

So how does it work?

Breaking down the problem

1. A monadic “propagator”
(declare cells, declare relationships, solves, read values)

2. The pure wrapping

3. Some issues we gloss over today

Our (simplified) goal:

data RSet a

insert :: a -> RSet a -> RSet a

get :: RSet a -> Set a

22

Breaking down the problem

1. A monadic “propagator”
(declare cells, declare relationships, solves, read values)

2. The pure wrapping

3. Some issues we gloss over today

Our (simplified) goal:

data RSet a

insert :: a -> RSet a -> RSet a

get :: RSet a -> Set a

22

The propagator – the API

data Cell a

newC :: IO (Cell a)

insertC :: Ord a => Cell a -> a -> Cell a -> IO ()

getC :: Cell a -> IO (Set a)

23

The propagator – a naive(!) implementation

data Cell a = C (IORef (Set a)) (IORef [IO ()])

newC :: IO (Cell a)

newC = C <$> newIORef S.empty <*> newIORef []

insertC :: Ord a => Cell a -> a -> Cell a -> IO ()

insertC (C s0 ws0) x (C s1 ws1) = do

let update = do

new <- S.insert x <$> readIORef s1

old <- readIORef s0

unless (old == new) $ do

writeIORef s0 new

readIORef ws0 >>= sequence_

modifyIORef ws1 (update :)

update

getC :: Cell a -> IO (Set a)

getC (C s1 _) = readIORef s1
24

The pure wrapper – the API

data RSet a

insert :: Ord a => a -> RSet a -> RSet a

get :: RSet a -> Set a

25

The pure wrapper – let’s get dirty

unsafePerformIO :: IO a -> a

26

A thunking data structure

data DoOnce

later :: IO () -> IO DoOnce

doNow :: DoOnce -> IO ()

27

A thunking data structure

data DoOnce = DoOnce (IO ()) (IORef Bool)

later :: IO () -> IO DoOnce

later act = DoOnce act <$> newIORef False

doNow :: DoOnce -> IO ()

doNow (DoOnce act done) = do

is_done <- readIORef done

unless is_done $ do

writeIORef done True

act

28

The pure wrapper – a naive(!) implementation

data RSet a = RSet (Cell a) DoOnce

insert :: Ord a => a -> RSet a -> RSet a

insert x r2 = unsafePerformIO $ do

c1 <- newC

todo <- later $ do

let (RSet c2 todo2) = r2

insertC c1 x c2

doNow todo2

return (RSet c1 todo)

get :: RSet a -> Set a

get (RSet c todo) = unsafePerformIO $ do

doNow todo >> getC c 29

Simplified for your viewing pleasure

• Other data types
RBool with (RB.&&) etc.

• Mixing different data types
RS.member :: Ord a => a -> RSet a -> RBool

• Concurrency and reentrancy issues (unsafePerformIO!)

• Space leaks (watchers!)

30

Is this still Haskell?

Queasy about unsafePerformIO?

that is why the function is unsafe.
However “unsafe” is not the same as “wrong”. It simply means that the program-
mer, not the compiler, must undertake the proof obligation that the program’s
semantics is unaffected [. . .]

“Stretching the Storage Manager: Weak Pointers and Stable Names in Haskell”
Simon Peyton Jones, Simon Marlow, and Conal Elliott

31

Is this still Haskell?

• Type safety ✓

• Independence of evaluation order ✓

(At least if the ascending chain conditions holds, else unclear.)

• Equational reasoning ✓

let x = E1[x] in E2[x] ≡ let x = E1[x] in E2[E1[x]]

let x = E1[x] in E2[x] ≡ let x = E1[y]; y = E1[x] in E2[x]

• Lambda lifting ✗

let x = E1[x,e] in E2[x] ̸≡ let x y = E1[x y,y] in E2[x e]

Transformations that break sharing can prevent termination!
(So far: can only increase costs, but otherwise unobservable)

. . . and how to prove it?

32

Is this still Haskell?

• Type safety ✓

• Independence of evaluation order ✓

(At least if the ascending chain conditions holds, else unclear.)

• Equational reasoning ✓

let x = E1[x] in E2[x] ≡ let x = E1[x] in E2[E1[x]]

let x = E1[x] in E2[x] ≡ let x = E1[y]; y = E1[x] in E2[x]

• Lambda lifting ✗

let x = E1[x,e] in E2[x] ̸≡ let x y = E1[x y,y] in E2[x e]

Transformations that break sharing can prevent termination!
(So far: can only increase costs, but otherwise unobservable)

. . . and how to prove it?

32

Is this still Haskell?

• Type safety ✓

• Independence of evaluation order ✓

(At least if the ascending chain conditions holds, else unclear.)

• Equational reasoning ✓

let x = E1[x] in E2[x] ≡ let x = E1[x] in E2[E1[x]]

let x = E1[x] in E2[x] ≡ let x = E1[y]; y = E1[x] in E2[x]

• Lambda lifting ✗

let x = E1[x,e] in E2[x] ̸≡ let x y = E1[x y,y] in E2[x e]

Transformations that break sharing can prevent termination!
(So far: can only increase costs, but otherwise unobservable)

. . . and how to prove it?

32

Summary

• Laziness is key to describing recursive problems declaratively.

• Let us allow more partial orders than Haskell’s “normal one”!

• Open question: Is this still pure, and how to prove it?

• Not discussed today:
The let x = x problem, thread safety, avoiding leaks, performance.

Thank you for your attention!

33

Backup slides

Theory

All involved functions must be monotone

For sets:

If s1 ⊆ s2 then f (s1) ⊆ f (s2).

For Bool:

If b1 ≤ b2 then f (b1) ≤ f (b2).

where False ≤ True.

34

Finding the least fixed-point

Let X be partially ordered by ⊑, ⊥ ∈ X be its least element, and f : X → X be a
continuous function (i.e. x ⊑ y =⇒ f (x) ⊑ f (y)).

Then the sequence
⊥ ⊑ f (⊥) ⊑ f (f (⊥)) ⊑ . . .

either diverges (all elements are different), or eventually finds a least fixed-point x ∈ X

of f , where
x = f (x).

If X has the Ascending Chain Condition (i.e. no infinite chain x0 ⊏ x1 ⊏ . . . exists),
then the fixed-point will always be found.

35

Finding the least fixed-point

Let X be partially ordered by ⊑, ⊥ ∈ X be its least element, and f : X → X be a
continuous function (i.e. x ⊑ y =⇒ f (x) ⊑ f (y)).

Then the sequence
⊥ ⊑ f (⊥) ⊑ f (f (⊥)) ⊑ . . .

either diverges (all elements are different), or eventually finds a least fixed-point x ∈ X

of f , where
x = f (x).

If X has the Ascending Chain Condition (i.e. no infinite chain x0 ⊏ x1 ⊏ . . . exists),
then the fixed-point will always be found.

35

Finding the least fixed-point

Let X be partially ordered by ⊑, ⊥ ∈ X be its least element, and f : X → X be a
continuous function (i.e. x ⊑ y =⇒ f (x) ⊑ f (y)).

Then the sequence
⊥ ⊑ f (⊥) ⊑ f (f (⊥)) ⊑ . . .

either diverges (all elements are different), or eventually finds a least fixed-point x ∈ X

of f , where
x = f (x).

If X has the Ascending Chain Condition (i.e. no infinite chain x0 ⊏ x1 ⊏ . . . exists),
then the fixed-point will always be found.

35

It worked!
Let’s try another example. . .

A small programming language

type Var = String

data Exp

= Var Var

| Lam Var Exp

| App Exp Exp

| Throw

| Catch Exp

| Let Var Exp Exp

36

A small analysis

canThrow1 :: Exp -> Bool

canThrow1 = go M.empty where

go :: M.Map Var Bool -> Exp -> Bool

go env (Var v) = env M.! v

go env Throw = True

go env (Catch e) = False

go env (Lam v e) = go (M.insert v False env) e

go env (App e1 e2) = go env e1 || go env e2

go env (Let v e1 e2) = go env’ e2 where

env_bind = M.fromList [(v, go env e1)]

env’ = M.union env_bind env

37

Let’s add recursion

data Exp

...

| LetRec [(Var, Exp)] Exp

canThrow1 :: Exp -> Bool

canThrow1 = go M.empty where

go :: M.Map Var Bool -> Exp -> Bool

...

go env (LetRec binds e) = go env’ e where

env_bind = M.fromList [(v, go env’ e) | (v,e) <- binds]

env’ = M.union env_bind env

38

Let’s add recursion

data Exp

...

| LetRec [(Var, Exp)] Exp

canThrow1 :: Exp -> Bool

canThrow1 = go M.empty where

go :: M.Map Var Bool -> Exp -> Bool

...

go env (LetRec binds e) = go env’ e where

env_bind = M.fromList [(v, go env’ e) | (v,e) <- binds]

env’ = M.union env_bind env

38

Let’s add recursion

data Exp

...

| LetRec [(Var, Exp)] Exp

canThrow1 :: Exp -> Bool

canThrow1 = go M.empty where

go :: M.Map Var Bool -> Exp -> Bool

...

go env (LetRec binds e) = go env’ e where

env_bind = M.fromList [(v, go env’ e) | (v,e) <- binds]

env’ = M.union env_bind env

38

Again, this fails with cyclic values

λ> someVal = Lam "y" (Var "y")

λ> prog = LetRec [("x", App (Var "x") someVal), ("y", Throw)] (Var "x")

λ> canThrow1 prog

^CInterrupted.

39

Data.Recursive.Bool to the rescue!

λ> someVal = Lam "y" (Var "y")

λ> prog = LetRec [("x", App (Var "x") someVal), ("y", Throw)] (Var "x")

λ> canThrow1 prog

^CInterrupted.

λ> canThrow2 prog

False

40

Data.Recursive.Bool API

import Data.Recursive.Bool as RB

RB.true :: RBool

RB.false :: RBool

RB.&& :: RBool -> RBool -> RBool

RB.|| :: RBool -> RBool -> RBool

RB.and :: [RBool] -> RBool

RB.or :: [RBool] -> RBool

...

RB.get :: RBool -> Bool

41

JFR: The full code

canThrow2 :: Exp -> Bool

canThrow2 = RB.get . go M.empty where

go :: M.Map Var RBool -> Exp -> RBool

go env (Var v) = env M.! v

go env Throw = RB.false

go env (Catch e) = RB.true

go env (Lam v e) = go (M.insert v RB.false env) e

go env (App e1 e2) = go env e1 RB.|| go env e2

go env (Let v e1 e2) = go env’ e2 where

env_bind = M.singleton v (go env e1)

env’ = M.union env_bind env

go env (LetRec binds e) = go env’ e where

env_bind = M.fromList [(v, go env’ e) | (v,e) <- binds]

env’ = M.union env_bind env
42

	Let's tie a knot!
	This does not work … could it?
	It worked! (And there are more examples, but not today…)
	So how does it work?
	Is this still Haskell?
	Backup slides
	Theory
	It worked! Let's try another example…

