
Functional
Development with
Kotlin

Torsten Fink

torsten.fink@akquinet.de

Some words
about me

From developer to manager – with functional
touchpoints
� 1989-1996: Study at the university in Erlangen/Nuremberg

§ Student thesis about a functional programming language for
parallel applications

� 1996-1998: Research project at the university in Jena
§ usage of Haskell to specify parallel applications

� 1998-2011: Developer, architect, consultant trainer at
akquinet
§ Lots of enterprise application stuff
§ Experience: functional programming style increases

maintainability and correctness
� 2011- : Executing manager at akquinet tech@spree

§ How to build up development skills in projects without
participating in projects?

https://plan.io/blog/from-developer-to-manager-and-back-again/

Some words about Kotlin

A worthy successor to Java

� Java started 1996, had IMHO lots of design flaws, but was fun and productive.

� In the following years its flaws were patched. The result: lots of special rules,
you have to keep in mind (e.g. autoboxing, integration of lambdas, „odd“
behavior of old classes).

� Several competitors for Java came up, e.g. Clojure, Ceylon, Scala, Groovy and
Kotlin (V 1.0 in 2016).

� Kotlin

§ is IMHO new, modern, clean, pragmatic, and continously improved,
§ compiles to the JVM, to JavaScript, and to binary code,
§ Is developed and used by JetBrains for their own IDE-products.

Some words about this tutorial

What are the key characteristics of FP?

What about your experience level in FP?

• I do not know anything but I
am curious.

• I know some basics but do not
practice it.

• I use FP regularly for
development.

• I am a senior FP citizen.
• Nothing fits to me.

Functional Programming
from the academical perspective

… a.k.a. Wikipedia

A programming paradigm

� .. functional programming is a programming
paradigm
§ where programs are constructed by applying

and composing functions.
� It is a declarative programming paradigm in

which
§ function definitions are trees of expressions

that map values to other values,

§ rather than a sequence of imperative
statements which update the running state of
the program.

val sumWithDiscountFP =
{ article1: Article, article2: Article,

discount: Double ->
val sumArticles =

article1.price + article2.price
val discountMultiplier =

1.0 - discount
discountMultiplier *

sumArticles
}

fun sumWithDiscountImp(
article1: Article, article2: Article,
discount: Double

): Double {
var result = 0.0
result += article1.price
result += article2.price
result *= (1.0 - discount)
return result

}

With functions as 1st class citizens

�… functions are treated as first-class
citizens, meaning that

§ they can be bound to names
(including local identifiers),

§ passed as arguments, and
§ returned from other functions,

just as any other data type can.
� This allows programs to be written

in a declarative and composable
style, where small functions are
combined in a modular manner.

typealias ProbandEvaluator = (Proband) -> Double

val probands = loadProbands()
val evaluator = createEvaluator()
val sortedProbands = sortProbands(probands, evaluator)

val sortProbands: (Set<Proband>, ProbandEvaluator) ->
List<Proband> =

{ probands: Set<Proband>, evaluator: ProbandEvaluator ->

val evaluatedProbands = probands.map()
{ proband: Proband -> Pair(evaluator(proband), proband) }

evaluatedProbands
.sortedBy { pair -> pair.first }
.map { pair -> pair.second }

}

And they are pure!

� Functional programming is sometimes treated as synonymous with purely
functional programming, a subset of functional programming which treats all
functions as deterministic mathematical functions, or pure functions.

�When a pure function is called with some given arguments, it will always
return the same result, and cannot be affected by any mutable state or other
side effects. …

� Proponents of purely functional programming claim
that by restricting side effects, programs can have
fewer bugs, be easier to debug and test, and be
more suited to formal verification.

fun doSeveralThings(input:Int) {
val a = doSomething(input)
doSomethingElse()
val b = doSomething(input)
// a == b

}

Boils down to: No side effects, only immutable state

Too much input, this is a tutorial
so let us dive into code

How to participate…

� You need:

§ a computer with some up-to-date browser
§ an internet connection.

� First question: Who would like to play with code?

� For anyone who woul like to join:

§ Navigate to:
https://github.com/tnfink/kotlinfptutorial/tree/forParticipants/src/main/kotlin
https://tinyurl.com/4pn2np2s

§ Show: CalculatorDemoDemo.kt
§ Copy‘n‘paste into: https://play.kotlinlang.org/
§ Run the code.

https://github.com/tnfink/kotlinfptutorial/tree/forParticipants/src/main/kotlin
https://tinyurl.com/4pn2np2s
https://play.kotlinlang.org/

The domain: a calculator

Display

Some Buttons

Some internal
registers (in the
example only 1,

called main)

to the IDE

Back to the conceptual view

An Example for: Why mutable state is bad!

� Task:
set up a pair of conferences for developers and give discount for attendees of
both conferences

// domain model

data class PriceM(
var amount: Double

) {}

data class ConferenceM(
var name: String,
var price: PriceM

) {}

// computation

val developersEpisode1 = ConferenceM(
"Developers - Episode 1", PriceM(200.0)

)
val developersEpisode2 = ConferenceM(

"Developers - Episode 2", developersEpisode1.price
)
// later in the code ... give a discount
developersEpisode2.price.amount *= 0.5

val ticketFee =
developersEpisode1.price.amount +

developersEpisode2.price.amount

Voting:
Value of ticketFee

300, 200, 400 ?

Result is 200
Intended was 300

The cause:
Impurity of the

attribute lookup

Doing the same in the pure way J

Make changes safe by creating new entities

data class PriceIM(
val amount: Double

) {}

data class ConferenceIM(
val name: String,
val price: PriceIM

) {}

val developersEpisode1 = ConferenceIM(
"Developers - Episode 1", PriceIM(200.0))

val developersEpisode2 = developersEpisode1.copy(
name = "Developers - Episode 2")

// later in the code ... give a discount
val discountedPrice = developersEpisode2

.price.copy(developersEpisode2.price.amount / 2)

val developersEpisode2Discounted = developersEpisode2.copy(
price = discountedPrice)

val ticketFee =
developersEpisode1.price.amount +

developersEpisode2Discounted.price.amount

ticketFee = 300

Create new values
with copy() instead of

reuse and modify

Functional Programming
now from the
Developer Perspective

Working on Data

The Triumvirate: Map, Fold, Pipe

�Map
apply a function on all elements of a collection
[a,b,c].map(f) = [f(a), f(b), f(c)]

� Fold
combine all elements using an initial value and a function
[a,b,c].fold(0,f) = f(f(f(0,a),b),c)

(Btw, this a a left fold.)
� Compose / Pipe

(f `compose` g)(x) = f(g(x))

� Let us dive into some examples: WorkingOnData.kt …

to the IDE

Is this functional code?

� Task:
Compute the sum of all numbers
in a list

var sum = 0
list.forEach

{ n -> sum += n }

val sum =
list.fold(0)

{ acc, n -> acc + n }

Side effect on sum

Separation of reusable
algorithmic structure
from specific domain

code

Implementing Algorithms

Numerical integration

start
end

f
Precision :=
Number of
rectangles

Typical imperative code

fun integrateImperative(
start: Double, end: Double, precision: Long,
f: (Double) -> Double

): Double {
val step = (end - start) / precision
var result = 0.0
var x = start
for (i in 0 until precision) {

result += f(x) * step
x += step

}
return result

}

start end

f Precision :=
Number of
rectangles

And now the same
algorithm with
functional
programming

IntegrationDemo.kt

to the IDE

What about performance?

� Some measurements for larger numbers on my (old) MacBook pro 2015

The imperative version is a
factor of 140 faster

Some loop optimization or JIT-
compilation kicks in

Out of Memory L

Sequences to your rescue

� A sequence is a list

§ generated on demand,
§ and potentially infinite.

�val oddNumbers =
generateSequence(1) { it + 2 }

� Simple switch to sequences in our example:
val xCoordinates = (0 until precision).asSequence()
.map { index -> start + index * step }

�… let‘s see, if it helps

And, the results are:

No memory problem J

Still a factor of 15 slower L

Just for the sake of completenes, a look at Haskell

�Haskell is a pure functional programming language.

�Our example:

integrate :: Double -> Double -> Int -> (Double -> Double) -> Double

integrate start end precision function = sum allRectangles
where
step = (end - start) / (fromIntegral precision)
xCoordinates = map (\i -> start + (fromIntegral i) * step)

[0 .. (precision-1)]
allRectangles = map (\x -> (function x) * step) xCoordinates

And, the final results are:

� Conclusion:
if you need
performance, use
imperative code hidden
behind an FP interface

Old Haskell is pretty fast.

What did I leave out?

Topics for some other tutorials

�How to develop unbounded loops.
The idea: Sequences und takeUntil, for more information see:
https://blog.akquinet.de/2019/09/17/unbounded-functional-loops-in-kotlin/

�How to handle side effects and non deterministics behavior, such as external
input/output and random numbers, in an ideomatic way for Kotlin.

�More sophisticated examples to use FP in the real world. For example
validation:
https://funktionale-programmierung.de/2023/01/19/kotlin-validation.html

� All the sophisticated FP stuff, such as Applicative Functors, Monads etc.
§ If you are interested in these and willing to learn a lot, checkout Arrow

https://arrow-kt.io

https://blog.akquinet.de/2019/09/17/unbounded-functional-loops-in-kotlin/
https://funktionale-programmierung.de/2023/01/19/kotlin-validation.html
https://arrow-kt.io/

Sum it all up

The key points from my perspective

� Functional programming (FP) provides IMHO

§ Less errors (immutable data)
§ Better maintainability (functions as 1st class citizens).

� Kotlin

§ is a modern (aka cool) programming language,
§ that provides nearly all features for FP
§ but is still an imperative language in its core,

leading to performance problems with FP.

