Lars Hupel
BOB Konferenz
2023-03-17

Giesecke+Devrient
Creating Confidence

Where would this line be used?

int mid = (low + high) / 2

Giesecke+Devrient
Creating Confidence

... and what’s wrong with it?

int mid = (low + high) / 2

Giesecke+Devrient
Creating Confidence

BLOG -

Extra, Extra - Read All About It: Nearly All Binary Searches
and Mergesorts are Broken

FRIDAY, JUNE 02, 2006
Posted by Joshua Bloch, Software Engineer

Giesecke+Devrient
Creating Confidence

Giesecke+Devrient
Creating Confidence

Sorting in Java

@ Giesecke+Devrient
Creating Confidence

.
OpenJDK’s java.utils.Collection.sort() is broken:

The good, the bad and the worst case*

Stijn de Gouw"?, Jurriaan Rot®', Frank S. de Boer':?, Richard Bubel?, and
Reiner Hiahnle?

1 CWI, Amsterdam, The Netherlands
2 SDL, Amsterdam, The Netherlands
* Leiden University, The Netherlands
% Technische Universitit Darmstadt, Germany

|

CAV 2015

GD Giesecke+Devrient
Creating Confidence

http://envisage-project.eu/wp-content/uploads/2015/02/sorting.pdf

C,t‘r\q I'AP (Sllhc \-—'f\g;\k

—

\Zk’,k(‘)\/‘\#7d V_\q f_‘ P
Mo Ik)'\ n Q\a 4

AN R 5. o

)

Programming & Bugs

@ Giesecke+Devrient
Creating Confidence

Requirements

Design/Architecture

Implementation

Testing

Operation

Giesecke+Devrient
Creating Confidence

Bugs: We don’t like them

Yet, they keep cropping up ...

Giesecke+Devrient
Creating Confidence

Requirements

Design/Architecture ’ DEbUggmg !

Implementation

Testing

Operation

Giesecke+Devrient
Creating Confidence

Debugging is a core skill

m

The9 Indispensable Rules
for Finding Even the Most
Elusive Software and
Hardware Problems

Practical

Debugging
at Scale

DAVID J. AGANS

Apress

Giesecke+Devrient
Creating Confidence

The Science of

DEBUGGING

Simple Testing Can Prevent Most Critical Failures

An Analysis of Production Failures in Distributed Data-intensive Systems
Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao,
Yongle Zhang, Pranay U. Jain, Michael Stumm
University of Toronto

Abstract

Large, production quality distributed systems still fail pe-
riodically, and do so sometimes catastrophically, where
most or all users experience an outage or data loss. We
present the result of a comprehensive study investigat-
ing 198 randomly selected, user-reported failures that oc-
curred on Cassandra, HBase, Hadoop Distributed File
System (HDFS), Hadoop MapReduce, and Redis, with
the goal of understanding how one or multiple faults
eventually evolve into a user-visible failure. We found

raises the questions of why these systems still experi-
ence failures and what can be done to increase their re-
siliency. To help answer these questions, we studied 198
randomly sampled, user-reported failures of five data-
intensive distributed systems that were designed to tol-
erate component failures and are widely used in produc-
tion environments. The specific systems we considered
were Cassandra, HBase, Hadoop Distributed File System
(HDFS), Hadoop MapReduce, and Redis.

Our goal is to better understand the specific failure

__manifestation <eanences that occurred in these svstems

~ + e

0OSDI 2014

Giesecke+Devrient
Creating Confidence

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf

Giesecke+Devrient
Creating Confidence

An Empirical Study of the Impact of Modern Code Review
Practices on Software Quality

Shane McIntosh - Yasutaka Kamei - Bram
Adams - Ahmed E. Hassan

Author pre-print copy. The final publication is available at Springer via:
http://dx.doi.org/10.1007/s10664-015-9381-9

Abstract Software code review, i.e., the practice of having other team members
critique changes to a software system, is a well-established best practice in both
open source and proprietary software domains. Prior work has shown that formal
code inspections tend to improve the quality of delivered software. However, the for-
mal code inspection process mandates strict review criteria (e.g., in-person meetings
and reviewer checklists) to ensure a base level of review quality, while the mod-

Empirical Software Engineering 2015

https://link.springer.com/article/10.1007/s10664-015-9381-9

Giesecke+Devrient
Creating Confidence

“Program testing can be a very effective way to show
the presence of bugs, but it is hopelessly inadequate

for showing their absence”

GB Giesecke+Devrient
Creating Confidence

(_" ¢ C‘K*(V rI7

u? .ﬁb\’ xry & J.é-f4¢ .
Gl T 2% isis Jof
f SH Jabt /
"/.y“.) S oo, 4 fé +h? CX({. 3(.‘._‘ (,'

/7 / . PRSI ¢
ﬂ'—.‘-:._d:g" @/;/‘ //-‘ g ' x&," (%4 NS

Formal Methods

“Formal Methods refers to mathematically rigorous
techniques and tools for the specification, design and
verification of software and hardware systems”

GD Giesecke+Devrient
Creating Confidence

What are Formal Methods?

Rigor

First-order logic Model checking
State machines Flowchart Property testing

Specification Implementation

N
»

Coverage

Giesecke+Devrient
Creating Confidence

ISO 5807 Flowchart

ISO 5807:1985

9.2.1 Basic process symbol

Process

This symbal represents any kind of processing function, for
example, executing a defined operation or group of operations
resulting in a change in value, form or location of information,
or in the determination of which one of several flow directions
is to be followed.

Giesecke+Devrient
Creating Confidence

9.2.2.1 Predefined process

This symbol represents a named process consisting of one or
more operations or program steps that are specified elsewhere,
for example, a subroutine, a module.

9.3.2.1 Control transfer

This symbol represents immediate transfer of control from one process to ancther, sometimes with a chance of the direct return to the

activating process after the activated process completes its actions. The type of control transfer should be named inside the symbol,
for example, call, fetch, event.

21

What is verification?

Specification Proof Implementation

Giesecke+Devrient
Creating Confidence

What is verification?

Abstract Executable

Proof Hel) Implementation

specification specification

Giesecke+Devrient
Creating Confidence

Formal Methods in practice

@ Giesecke+Devrient
Creating Confidence 24

\l

o 203 10 ""\“" B v

7Z RN

Giesecke+Devrient
Creating Confidence

Central Bank Digital Currency

Issued by the
central bank

Banknotes CBDC

Giesecke+Devrient
Creating Confidence

Digital money

26

Our customers

e central banks
e commercial/retail banks

e payment service providers

Giesecke+Devrient
Creating Confidence

A
foerer
geerft
-
punee®
."ll'
foees
eres

e
frems
e
pemzs®
gunssf
psusft
gause®
uuEss
sesue®
szeEed

EUROPE

U.K. bank mistakenly issues duplicate payments to
customers' accounts

January 3,2022 - 7:05 AMET
on Moming Edition

Lelle Issue: Bank of America Users Report
Negative Balances After Bug

Zelle users took to Twitter to bemoan the loss of funds from their Chase haS resolved tEChnical iSSl.Ie that

accounts as well as a lack of response from Bank of America and Zelle -
about the issue. caused thousands of reports of incorrect
TONY OWUSU « JAN 18, 2023 11:38 AM EST account balances

DEUTSCHE KREDITBANK
a By Clare Duffy, CNN Business
Updated 2:58 PM EDT, Sun June 28, 2020

DKB raumt fehlerhafte Buchungen m..]

Girokonten ein

Kunden beschweren sich tber doppelte Abbuchungen. Die

DKB verweist auf eine technische Storung. Wie viele Konten 'My Savings are miSSing': teChnical glit(:h
betroffen sind, ist unklar. reduces Barclays customers' cash to zero

By Dominic Webb
21 February 2019 » 7:06pm

Giesecke+Devrient
Creating Confidence 28

How money is represented in G+D Filia®

Giesecke+Devrient
Creating Confidence

29

Giesecke+Devrient
Creating Confidence

30

o~

Giesecke+Devrient
Creating Confidence

31

J CREATE
- I 0esTRoY

Z Ld’)&a

«

Creating Confidence

Giesecke+Devrient
Creating Confidence

Isabelle to the rescue!

LN] ¥ Seq.thy

D@®@E & 9¢ X D0 R THER X & ©:|e»

O Seq.thy (SISABELLE_ROOT/src/HOL/ex /) E B isabelle a

section <Finite sequences> i %
. L
Seq.thy

o |theory Seq v secion <Finite sequences:

theory Seq

imports Main
L |begin

datatype 'a seq = Empty | Seq 'a "'a seq"

fun conc :: "'a seq = 'a seq = 'a seq"l
where

"conc Empty ys = ys"
L || "conc (Seq x xs) ys = Seq x (conc xs ys)"
2 H
fun reverse constant "Seq.seq.Seq"
where 1 'a = 'aseq = 'aseq
"reverse cmpcy Ty
L || "reverse (Seq x xs) = conc (reverse xs) (Seq x Empty)"

lemma conc_empty: "conc xs Empty = xs"
by (induct xs) simp_all

Proof state [Auto update Update Search: > 0% v
constants
conc :: "'a seq = 'a seq = 'a seq"
Found termination order: "(Ap. size (fst p)) <*mlex*> {}"

B > Qutput
13,39 (200/789) (isabelleisabelle, UTF-8-1sabelle)

datatype 'a

fun reverse
lemma conc_empty: “conc xs Enpty = xs'
lamma conc_sss (canc xs ys) =
lamma reverse_conc: “reverss (conc xs |
lamma reverse_raverse: "reverse (revers

UG I/ 495MB 4:46 PM

4

PopEpIS

34

“Isabelle/HOL = Functional Programming + Logic”

GB Giesecke+Devrient
Creating Confidence

G+D Filia® in Isabelle/HOL

mathematical model of “coins” and their evolution
graph-theoretic considerations
high-level correctness properties

reference implementation (executable in Scala)

Giesecke+Devrient
Creating Confidence

Example: Money in circulation

definition graph_balance :: nat where
<graph_balance = (N € unspent. value N)»

Temma graph_balance_alt_def:
<graph_balance = | (3c € graph. value_difference

Giesecke+Devrient
Creating Confidence

c)

37

Google Announces KataOS As Security-Focused OS, Leveraging
Rust & sel. 4 Microkernel

' -
It s not j u St us Written by Michael Larabel in Google on 16 October 2022 at 06:10 AM EDT. 45 Comments

Google

CLOUD AND SYSTEMS

Google this week has announced the release of KataOS as their newest operating
system effort focused on embedded devices running ambient machine learning
workloads. KataOS is security-minded, exclusively uses the Rust programming
language, and is built atop the seL4 microkernel as its foundation

How to integrate Tormal proofs
into software development

ICSE paper presents techniques piloted by Amazon Web Services' Automated
Reasoning team.

By Daniel Schwartz-Narbonne

May 27, 2020

Formal Methods at Intel — An Overview

Verification ¢

In addition to our desire to determine how Parallel Commits fits into the broader
landscape of distributed systems theory, we also wanted to formally specify the
protocol and prove its safety properties through verification. To do so, we turned to
TLA+, a formal specification language developed by Leslie Lamport. TLA+ has been

used to great success to verify systems and algorithms ranging from DynamoDB and

53 all the way to the Raft Consensus Algorithm used by CockroachDB.

Giesecke+Devrient
Creating Confidence

John Harrison
Intel Corporation

11th Annual Oregon Programming Languages Summer School
University of Oregon, Eugene
26th July 2012 (19:00-20:00)

38

w U

Proof-Driven Development (PDD)

@ Giesecke+Devrient
Creating Confidence 39

Giesecke+Devrient
Creating Confidence

Giesecke+Devrient
Creating Confidence

@ Giesecke+Devrient
Creating Confidence 42

Designing a new feature

Can the feature work correctly?
Are there any undesirable feature interactions?

How can we implement the feature?

Giesecke+Devrient
Creating Confidence

43

Requirements

Design/Architecture “PDD"

Implementation

Testing

Operation

Giesecke+Devrient
Creating Confidence

PDD works for us

we found some flaws in our initial design of a feature

... including a feature interaction bug
after iterative improvement, the feature is now better than an alternative design
changed the internal (simpler) data model, but we established a mapping

feature has been shipped to production

Giesecke+Devrient
Creating Confidence

45

Roadmap

46

Giesecke+Devrient
Creating Confidence

(CD)

Hello Danial,
What would you like to do today?

Giesecke+Devrient
Creating Confidence

47

There's always more to do ...

expanding the scope of our formalization
adding model checking to our toolbox

closing the gap between executable specification and implementation

Giesecke+Devrient
Creating Confidence

48

Closing the gap

Executable
specification

Abstract Proof

specification Implementation

Giesecke+Devrient
Creating Confidence

https://lars.hupel.infc
lars.hupel@gi-de.com

Giesecke+Devrient
Creating Confidence

https://lars.hupel.info/
mailto:lars.hupel@gi-de.com

Image sources

Edsger W. Dijskstra: Hamilton Richards, CC-BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?title=File:Edsger Wybe Dijkstra.jpg&oldid=710250
942

César A. Munoz: https://shemesh.larc.nasa.gov/people/cam/

BPMN: Mikelo Skarabo, CC-BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?title=File:BPMN-
AProcessWithNormalFlow.svg&oldid=734511959

Giesecke+Devrient
Creating Confidence

https://commons.wikimedia.org/w/index.php?title=File:Edsger_Wybe_Dijkstra.jpg&oldid=710250942
https://shemesh.larc.nasa.gov/people/cam/
https://commons.wikimedia.org/w/index.php?title=File:BPMN-AProcessWithNormalFlow.svg&oldid=734511959

