Version control in the age of distributed
computing

Pierre-Etienne Meunier

March 17th, 2023



Version control as a distributed system

One or more coauthor editing a shared datastructure (e.g. a file)

Applying changes (or patches) to a common version

>
>
> Sometimes, these changes conflict, and conflicts must be resolved
» Another feature : reviewing and changing the project’s history

>

Fundamental questions # important/useful



Conflicts

» Where we need a good tool the most

» The exact definition depends on the tool

» Example : Alice and Bob write at the same place in the same file
» Example : Alice renames a file from fto g while Bob renames fto h

» Example : Alice renames a function f while Bob adds a call to f



Some (minimal) bibliography

» The CAP theorem (Brewer, 1998) : a system robust to network
partitions cannot be consistent and available at the same time.

» Choosing consistency : leader election
Paxos (Lamport 1989), Raft (Ongaro, Ousterhout 2011)

» Choosing availability :
Operational Transforms, or OTs (Ellis, Gibbs 1989)
Conflict-free Replicated DataTypes, or CRDTs (Shapiro et al 2011)



Desirable properties of changes

1. Associativity : changes can be applied one by one or together, i.e.
(AB)C = A(BC)

2. Commutativity : changes that could be written independently can
be applied in any order, i.e. AB= BA

3. Changes can be unapplied even after other independent changes
have been added.



Trying to simulate algebraic properties

Git, Mercurial, SVN, CVS... try to simulate some of these properties :

> git merge tries to be associative, (AB)C = A(BC)
Long-lived branches are bad practice.

» git cherry-pick tries to simulate commutativity, AB = BA

Don’t merge that same branch later on or you'll also get
unexplained conflicts.

Some tools focus on conflicts (git rerere, jujutsu).

We want to focus on their causes instead.



Git and SVN are not associative

G—G
A— A

B—B
A

e
N\

>0 W



Towards a suitable datastructure

For any two patches f and g, we would like a state P to exist and be
unique, such that :

f
X Y
V4 P

Work started by Samuel Mimram (Ecole Polytechnique)



Towards a suitable datastructure

For any two patches f and g, we would like a state P to exist and be
unique, such that :
For any state Q accessible by Alice and by Bob after fand g

Work started by Samuel Mimram (Ecole Polytechnique)



Towards a suitable datastructure

For any two patches f and g, we would like a state P to exist and be

unique, such that :
For any state Q accessible by Alice and by Bob after fand g

There exists a path from P to Q.

f

X

d

If P exists and is unique, P is called the pushout of fand g.

Work started by Samuel Mimram (Ecole Polytechnique)



Problem : pushouts don't always exist

» Or otherwise said : sometimes, there are conflicts
» How to generalise the representation of states (like X, Y, Z) so that
all pairs (like (f, g)) have a (unique) pushout?

f
X

Y

g

Z

P

Solution : States are directed graphs where :
» Vertices are bytes (or byte intervals).

» Edges are the union of all orders known between vertices
(“this byte comes before that byte").



Adding a line

» Vertices are labelled by a patch identity (example : ¢y) and an
interval of bytes (example : [0, n[) within that patch.

» Edges are labelled by the patch that introduced them.

Here is patch ¢; adding m bytes between positions i— 1 and i of patch ¢ :

1
—”0
[C1



Deleting a line

Patch ¢, deletes bytes j to i (excluded) from ¢, and then 0 to k
(excluded) from ¢ :




Conflicts

» Alive vertices are vertices whose incoming edges are all alive
» Dead vertices are vertices whose incoming edges are all dead

» Other vertices are called zombies.

A graph is conflict-free iff it has no zombies
and all alive vertices are totally ordered.



Example : an order conflict

m

N S /) ne—wme—>

N—We— >

>

N<«—W

NS

/

N



Example : deleted down context

< —->MN—-0O — PR

<—m0— 0O



Implementation of Pijul

» Almost entirely written in Rust
» Beta since January 18", 2022

» Notable components :

» Sanakirja : a library for transactional, on-disk datastructures,
with a central basic structure (forkable B trees)

» Libpijul : the algorithms described in this talk

» Pijul : command-line interface, network ops



Quick zoom in on Sanakirja

> Forkable in near-constant time, transactional, on-disk KV store
» Fastest open source library for all supported operations

» Reusable for other datastructures, not necessarily search trees

» Extensible to non-disk backends like serverless

» Too generic = hard to use (contributions wanted !)



Important implementation details

» Cherry-picking, partial clones, repository merges don't need any
special treatment.

» Patches are detachable from their contents : dead byte intervals
don't need to be downloaded.

» Pijul has a generic backend, which can be used on disk, compressed
files, serverless databases...



First attempt at hosting : nest.pijul.com

Written in asynchronous Rust (Tokio + Hyper)
Deployed with Nix + custom tools to OVH (OpenStack)

>

>

» Replicated in Canada, France and Singapore

> Motivated the creation of an SSH library to write the server
>

Pijul repositories are particularly suitable for replication



First attempt at hosting : nest.pijul.com

Main issues :
» Went through OVH fire in Strasbourg in March 2021 — replication !
» Machines were hard to provision (for financial reasons + NixOS)

» Needed local geographical replicas of PostgreSQL, plus a leader.

We sometimes lose data during leader switchovers

» Single-person team



Announcing the new Nest

» Typescript + some WASM, running on Cloudflare Workers

» Fake Pijul repositories, with Sanakirja running on top of
Cloudflare KV or DO.

» Many small independent workers, much easier to contribute to

» Self-hosting possible (but not yet easy)



What's next ?

» Open-source and funding : nobody has ever been working
full-time on this

> Just like functional programming, radical changes take time to
be adopted

» Using version control where Git cannot go : video games, legal
documents, participatory democracy...



What's next ?

» Open-source and funding : nobody has ever been working
full-time on this

> Just like functional programming, radical changes take time to
be adopted

» Using version control where Git cannot go : video games, legal
documents, participatory democracy...

Thanks for your attention

(and sorry | couldn’t be with you today!)



	The fundamental point of view
	Implementation of the tool
	Hosting service
	Conclusion

