
1/20

Version control in the age of distributed
computing

Pierre-Étienne Meunier

March 17th, 2023



2/20

Version control as a distributed system

▶ One or more coauthor editing a shared datastructure (e.g. a file)
▶ Applying changes (or patches) to a common version
▶ Sometimes, these changes conflict, and conflicts must be resolved
▶ Another feature : reviewing and changing the project’s history
▶ Fundamental questions ̸= important/useful



3/20

Conflicts

▶ Where we need a good tool the most

▶ The exact definition depends on the tool

▶ Example : Alice and Bob write at the same place in the same file

▶ Example : Alice renames a file from f to g while Bob renames f to h

▶ Example : Alice renames a function f while Bob adds a call to f



4/20

Some (minimal) bibliography

▶ The CAP theorem (Brewer, 1998) : a system robust to network
partitions cannot be consistent and available at the same time.

▶ Choosing consistency : leader election
Paxos (Lamport 1989), Raft (Ongaro, Ousterhout 2011)

▶ Choosing availability :
Operational Transforms, or OTs (Ellis, Gibbs 1989)
Conflict-free Replicated DataTypes, or CRDTs (Shapiro et al 2011)



5/20

Desirable properties of changes

1. Associativity : changes can be applied one by one or together, i.e.
(AB)C = A(BC)

2. Commutativity : changes that could be written independently can
be applied in any order, i.e. AB = BA

3. Changes can be unapplied even after other independent changes
have been added.



6/20

Trying to simulate algebraic properties

Git, Mercurial, SVN, CVS… try to simulate some of these properties :

▶ git merge tries to be associative, (AB)C = A(BC)
Long-lived branches are bad practice.

▶ git cherry-pick tries to simulate commutativity, AB = BA
Don’t merge that same branch later on or you’ll also get
unexplained conflicts.

Some tools focus on conflicts (git rerere, jujutsu).
We want to focus on their causes instead.



7/20

Git and SVN are not associative

A
B

G
A
B

A
B
G
A
B

A

B
X

A
X
B
G
A
B



8/20

Towards a suitable datastructure

For any two patches f and g, we would like a state P to exist and be
unique, such that :

For any state Q accessible by Alice and by Bob after f and g
There exists a path from P to Q.

X Y

Z P

g

f

Q∀

∀

∃

If P exists and is unique, P is called the pushout of f and g.

Work started by Samuel Mimram (École Polytechnique)



8/20

Towards a suitable datastructure

For any two patches f and g, we would like a state P to exist and be
unique, such that :
For any state Q accessible by Alice and by Bob after f and g

There exists a path from P to Q.

X Y

Z P

g

f

Q∀

∀

∃

If P exists and is unique, P is called the pushout of f and g.

Work started by Samuel Mimram (École Polytechnique)



8/20

Towards a suitable datastructure

For any two patches f and g, we would like a state P to exist and be
unique, such that :
For any state Q accessible by Alice and by Bob after f and g
There exists a path from P to Q.

X Y

Z P

g

f

Q∀

∀

∃

If P exists and is unique, P is called the pushout of f and g.

Work started by Samuel Mimram (École Polytechnique)



9/20

Problem : pushouts don’t always exist

▶ Or otherwise said : sometimes, there are conflicts
▶ How to generalise the representation of states (like X, Y, Z) so that

all pairs (like (f, g)) have a (unique) pushout ?

X Y

Z P

g

f

Solution : States are directed graphs where :
▶ Vertices are bytes (or byte intervals).
▶ Edges are the union of all orders known between vertices

(“this byte comes before that byte”).



10/20

Adding a line

▶ Vertices are labelled by a patch identity (example : c0) and an
interval of bytes (example : [0, n[) within that patch.

▶ Edges are labelled by the patch that introduced them.

Here is patch c1 adding m bytes between positions i−1 and i of patch c0 :

c0 : [0, n[

c0 : [0, i[

c0 : [i, n[

c1 : [0,m[c0

c1

c1



11/20

Deleting a line
Patch c2 deletes bytes j to i (excluded) from c0, and then 0 to k
(excluded) from c1 :

c0 : [0, n[

c0 : [0, i[

c0 : [i, n[

c1 : [0,m[c0

c1

c1

c0 : [0, j[

c0 : [j, i[

c0 : [i, n[

c1 : [0, k[

c1 : [k,m[

c2

c0

c2

c1

c1



12/20

Conflicts

▶ Alive vertices are vertices whose incoming edges are all alive
▶ Dead vertices are vertices whose incoming edges are all dead
▶ Other vertices are called zombies.

A graph is conflict-free iff it has no zombies
and all alive vertices are totally ordered.



13/20

Example : an order conflict

A

B

C

A

B

C

D

A

B

C

E

A

B

C

DE



14/20

Example : deleted down context

A

B

C

A

B

C

A

B

C

D

A

B

C

D



15/20

Implementation of Pijul

▶ Almost entirely written in Rust

▶ Beta since January 18th, 2022

▶ Notable components :
▶ Sanakirja : a library for transactional, on-disk datastructures,

with a central basic structure (forkable B trees)
▶ Libpijul : the algorithms described in this talk
▶ Pijul : command-line interface, network ops



16/20

Quick zoom in on Sanakirja

▶ Forkable in near-constant time, transactional, on-disk KV store

▶ Fastest open source library for all supported operations

▶ Reusable for other datastructures, not necessarily search trees

▶ Extensible to non-disk backends like serverless

▶ Too generic = hard to use (contributions wanted !)



17/20

Important implementation details

▶ Cherry-picking, partial clones, repository merges don’t need any
special treatment.

▶ Patches are detachable from their contents : dead byte intervals
don’t need to be downloaded.

▶ Pijul has a generic backend, which can be used on disk, compressed
files, serverless databases…



18/20

First attempt at hosting : nest.pijul.com

▶ Written in asynchronous Rust (Tokio + Hyper)
▶ Deployed with Nix + custom tools to OVH (OpenStack)
▶ Replicated in Canada, France and Singapore
▶ Motivated the creation of an SSH library to write the server
▶ Pijul repositories are particularly suitable for replication



18/20

First attempt at hosting : nest.pijul.com

Main issues :
▶ Went through OVH fire in Strasbourg in March 2021 → replication !
▶ Machines were hard to provision (for financial reasons + NixOS)
▶ Needed local geographical replicas of PostgreSQL, plus a leader.

We sometimes lose data during leader switchovers
▶ Single-person team



19/20

Announcing the new Nest

▶ Typescript + some WASM, running on Cloudflare Workers

▶ Fake Pijul repositories, with Sanakirja running on top of
Cloudflare KV or DO.

▶ Many small independent workers, much easier to contribute to

▶ Self-hosting possible (but not yet easy)



20/20

What’s next ?

▶ Open-source and funding : nobody has ever been working
full-time on this

▶ Just like functional programming, radical changes take time to
be adopted

▶ Using version control where Git cannot go : video games, legal
documents, participatory democracy…

Thanks for your attention
(and sorry I couldn’t be with you today !)



20/20

What’s next ?

▶ Open-source and funding : nobody has ever been working
full-time on this

▶ Just like functional programming, radical changes take time to
be adopted

▶ Using version control where Git cannot go : video games, legal
documents, participatory democracy…

Thanks for your attention
(and sorry I couldn’t be with you today !)


	The fundamental point of view
	Implementation of the tool
	Hosting service
	Conclusion

