
The Unreasonable Effectiveness
of Events
 

1

Mastodon @lutzhuehnken@mastodon.social

LinkedIn https://linkedin.com/in/lutzh

Blog https://www.reactivesystems.eu/





@lutzhuehnken@mastodon.social

Why me?

- Built my first message-driven, asynchronous system 
for the Bundesbank in 2002

- Worked on various Event-Driven systems, e.g. for 
Zalando, ING, ista, Maersk

- Currently building a bank (!) with Event-Driven 
Architecture, Microservices, DDD
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Reminder: Queries, Commands, Events

9

Is..

Query A request for information about 
the current state of one or many 
objects

Command An intention to perform an 
operation or change a state

Event A fact, something that 
undisputedly happened in the 
past
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Reminder: Queries, Commands, Events
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Is.. Expected Response

Query A request for information 
about the current state of 
one or many objects

The requested information

Command An intention to perform an 
operation or change a state

A confirmation that the 
command has been 
executed, or an error 
message if the command 
failed

Event A fact, something that 
undisputedly happened in 
the past

None (events are facts, 
they can’t “fail”)
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Reminder: Queries, Commands, Events
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Is.. Expected Response Communication Pattern

Query A request for information 
about the current state of 
one or many objects

The requested information Request-Response

Command An intention to perform an 
operation or change a state

A confirmation that the 
command has been 
executed, or an error 
message if the command 
failed

Request-Response

Event A fact, something that 
undisputedly happened in 
the past

None (events are facts, 
they can’t “fail”)

Fire-and-Forget
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Reminder: Queries, Commands, Events
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Is.. Expected Response Communication Pattern

Query A request for information 
about the current state of 
one or many objects

The requested information Request-Response

Command An intention to perform an 
operation or change a state

A confirmation that the 
command has been 
executed, or an error 
message if the command 
failed

Request-Response

Event A fact, something that 
undisputedly happened in 
the past

None (events are facts, 
they can’t “fail”)

Fire-and-Forget

But how can I know it’ll 
be picked up and processed? 
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Mental model 1/2
Thinking in Promises
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(-b)
A1 --->A2

(-OrderCreated)
PaymentService ---> OrderService
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Agents
Agents in Promise Theory are said to be autonomous, meaning that they are causally 
independent of one another. This independence implies that they cannot be controlled 
from without, they originate their own behaviours entirely from within, yet they can rely 
on one another's services through the making of promises to signal cooperation. 

Promises
Promises arise when an agent shares one of its intentions with another agent voluntarily, 
e.g. by publishing its intent. 

https://en.wikipedia.org/wiki/Promise_theory
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https://en.wikipedia.org/wiki/Promise_theory
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Synchronous Command Asynchronous Command Asynchronous Event
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Events are 
“fire-and-forget”...

… but based on previous 
agreements (promises)
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Reminder: Queries, Commands, Events
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Is.. Expected Response Communication Pattern

Query A request for information 
about the current state of 
one or many objects

The requested information Request-Response

Command An intention to perform an 
operation or change a state

A confirmation that the 
command has been 
executed, or an error 
message if the command 
failed

Request-Response

Event A fact, something that 
undisputedly happened in 
the past

None (events are facts, 
they can’t “fail”)

Fire-and-Forget 
(rely on promises)But surely there’ll still b

e errors we need to handle?
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Mental model 2/2
Functional Programming
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item, err := reserveItem(itemNumber)
if err != nil {
    return nil, errors.New("out of stock")
}

confirmation, err := getPayment(itemNumber)
if err != nil {
    return nil, errors.New("insufficient funds")
}

result, err := shipItem(itemNumber)
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reserveItem(itemNumber).flatMap(getPayment).flatMap(shipItem)
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The unreasonable effectiveness of events:
Beyond asynchronous communication, being 
event-driven has a massive effect on the 
overall workflow and system design.
Event-Driven Architecture (EDA) is at least as 
much about the flow as it is about the actual 
events.
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Mindbender: 
We could treat a command like an event
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Is.. Expected Response Communication Pattern

Command An intention to perform an 
operation or change a state

None (receiver is not 
allowed to reject)

Fire-and-Forget

Event A fact, something that 
undisputedly happened in 
the past

None (events are facts, 
they can’t “fail”)

Fire-and-Forget
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Maybe, instead of Event-Driven Architecture, 
we should talk about microworkflows?
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Coming soon: https://microworkflows.org
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The unreasonable effectiveness of events:

- scalability and resilience
- testability
- organizational clarity / domain boundaries
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Enjoy the (load) testing
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Fewer (no?) runtime dependencies to other services = simpler tests. 

Testing an event-driven service (or a microworkflow) is still an 
integration test. 

But it’s nice to be able to test e.g. throughput in a very isolated way.
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Important Patterns
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Separate Observing from Control
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Bring the data to the process
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Bonus models 
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Think Unix Philosophy

1. Make each program do one thing well. To do a new job, build afresh 
rather than complicate old programs by adding new "features".

2. Expect the output of every program to become the input to another, as 
yet unknown, program. ...
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$ Cat file3.txt | grep “dwx” | tee file4.txt | wc –l
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Think Stream Processing
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Think Actors
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Supervisor

ActorClient
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Bonus content: 
The Saga Pattern Considered Harmful 
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Event-Driven Architecture

enables scalability, resilience
promotes clear responsibility boundaries 
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Event-Driven Architecture

Thinking in events is not enough - you’ll also 
need to think in terms of promises and 
railways.

Make sure not to approach it with an imperative 
mindset.

46



What do you think? 
Let’s discuss!
Please rate your experience ⭐⭐⭐⭐⭐
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