supvest

The Unreasonable Effectiveness
of Events

@lutzhuehnken@mastodon.social

https://linkedin.com/in/lutzh

https://www.reactivesystems.eu/

| wrote this

without
ChatGPT

supvest

Why me?

- Built my first message-driven, asynchronous system
for the Bundesbank in 2002

- Worked on various Event-Driven systems, e.g. for
Zalando, ING, ista, Maersk

- Currently building a bank (!) with Event-Driven
Architecture, Microservices, DDD

@lutzhuehnken@mastodon.socia

@lutzhuehnken@mastodon.social

Client

Goateway, Proxy, ...

V.

OrderService

4)

Datastore

- J

@lutzhuehnken@mastodon.social

Client

Pac/men‘tse,rvice

—>| OrderService

4)

Datastore

\ _J

4)

Client

- J
A

67a‘te_WOJf, Pf‘oxy, vee

<

Datastore

a I

\— J

IV\Ve_V\‘ton/Se,Nice_

SR

Datastore

\ _J

@lutzhuehnken@mastodon.social

Pat/me_n‘tSe,rvice

OrderService &=

Iv\Ve_n'ton/Se_rvice

S(/nclnronous calls (e.g. HTTP, 3RPC)

=

PaymentSeNice

@lutzhuehnken@mastodon.social

getPayment

OrderService

reserveltem

$h§PI't em

I nven‘tort/SeNice

Asynchnonous messaging

--------- I te,mRe,Sera‘tionMsg— —————eD
<< - - - - -ResewationConP?ma‘tionMsg- ------
_____ R T)
Po\t/me_ntSe_rv?ce < equestPaymentMsg- OrderService IV\Ve,nton/Serv.ce_
----- Pat/men‘tConPimationMsg- -———>
---------- ItemShippingMsg = = = = = = = -
<€ - - - - ShIPPIV\gConPimau‘tionMs?- -------

@lutzhuehnken@mastodon.social

supvest

Reminder: Queries, Commands, Events

Is..

Query A request for information about
the current state of one or many
objects

Command An intention to perform an

operation or change a state

Event A fact, something that
undisputedly happened in the
past

@lutzhuehnken@mastodon.social

Events

Pou/me_ntservice,

@lutzhuehnken@mastodon.social

OrderService

————————— -OrderSubmitted = = = = = = = = >
<----=-=---- ItemReserved = = = = = = = = = =
--------- Payme,n‘tRe,cejve_d— ———————>
< - ———- Ite,mShiPPep(-----------

Inve_ntoryserv}ce,

10

supvest

@lutzhuehnken@mastodon.social

Workflow

--------------- Request--=-=-=-=-=-=-=-=cc=-=>

Service 1
T —————— - Response- = - = —--—----====-
--------------- Reque,st---—--------—->

Service A
G - - Response- === - ----=---=-~-4
--------------- Request-=-=-=-=-=-=-=-=-=--=-->

Service 3
<----—— - Response= == -=-==--=---—---+<

11

supvest

Service 1

@lutzhuehnken@mastodon.social

Service

Service 3

12

supvest

Reminder: Queries, Commands, Events

Is.. Expected Response

Query A request for information The requested information
about the current state of
one or many objects

Command An intention to perform an A confirmation that the
operation or change a state n command has been
executed, or an error
message if the command

failed
Event A fact, something that None (events are facts,
undisputedly happened In they can't “fail”)

the past

@lutzhuehnken@mastodon.social

13

supvest

Reminder: Queries, Commands, Events

Is.. Expected Response Communication Pattern

Query A request for information The requested information Request-Response
about the current state of
one or many objects

Command An intention to perform an A confirmation that the Request-Response
operation or change a state n command has been
executed, or an error
message if the command

failed
Event A fact, something that None (events are facts, Fire-and-Forget
undisputedly happened In they can't “fail”)

the past

@lutzhuehnken@mastodon.social

14

supvest

Reminder: Queries, Commands, Events

Is.. Expected Response Communication Pattern

Query A request for information The requested information Request-Response
about the current state of
one or many objects

Command An intention to perform an A confirmation that the esponse

operation or change a state command has
execute
mand

Event A fact, somethi one (events are facts, Fire-and-Forget
undispu they can't “fail”)

@lutzhuehnken@mastodon.social

15

supvest

Mental model 1/2
Thinking in Promises

@lutzhuehnken@mastodon.soci

al

THINKING IN

PRUMISES

DESIGNING SYSTEMS FOR COOPERATION

MARK BURGESS

16

supvest

@lutzhuehnken@mastodon.social

(-b)
A1l —>A2

(-OrderCreated)
PaymentService —— OrderService

17

supvest

Agents

Agents in Promise Theory are said to be autonomous, meaning that they are causally
independent of one another. This independence implies that they cannot be controlled
from without, they originate their own behaviours entirely from within, yet they can rely
on one another's services through the making of promises to sighal cooperation.

Promises

Promises arise when an agent shares one of its intentions with another agent voluntarily,
e.d. by publishing its intent.

@lutzhuehnken@mastodon.social

18

https://en.wikipedia.org/wiki/Promise_theory

supvest

Synchronous Command

@lutzhuehnken@mastodon.social

Asynchronous Command

y \
i 0 | |

Asynchronous Event

19

supvest

Events are
“fire-and-forget”...

... but based on previous
agreements (promises)

@lutzhuehnken@mastodon.socia

20

supvest

Reminder: Queries, Commands, Events

Is.. Expected Response Communication Pattern

Query A request for information The requested information Req
about the current state of
one or many objects

Command An intention to perform an A confi Request-Response

operation or change a state

Fire-and-Forget
(rely on promises)

None (events are facts,
e they can't “fail”)

Event

@lutzhuehnken@mastodon.social

21

supvest

Commands

3ncomin3 request

@lutzhuehnken@mastodon.social

Inc0min3:
Easy
(you can
retum an

error)
1 SP

Outgoimj:
Hourdl
(heed to deal
with errors,
time-outs)
5 sSP

call other SerVic e

22

supvest

Events

-------- incoming event: = = = = = - >

@lutzhuehnken@mastodon.social

Incomingz
Hourd
(you're,
r‘e_$ponsible_ for
komouing)
5 SP

Outgo?mj:
Easy
(publish ond

you're done)
1 SP

23

supvest

Mental model 2/2
Functional Programming

@lutzhuehnken@mastodon.socia

24

supvest

Commands

———-——R equ est

PartialFunctionlRequest,Result] — Result >

(—————Ma‘tchEN‘on—-————

@lutzhuehnken@mastodon.social 25

supvest

Events

Par’tialFuthionLRequest ,Re,sul‘tJ .lipte,o(

-> FunctionlRequest, Op‘tion[.RQSul‘tJJ

@lutzhuehnken@mastodon.social

- - - - Some(Result)- - >

20

supvest

-------------- Request--==---=----->

Service 1
GELLELITLLLLY Regporgge === === == aon =1
--------------- Request === ==eecaaaa>

WorkPlow Service

AGRERITELELLLY S Responsg: === === =======-
--------------- Requeste========---->

Serviee 3
GLRLE L Responsgm == === === === =1

@lutzhuehnken@mastodon.social

item, err
if err '= nil {
return nil,

reserveltem (itemNumber)

errors.New("out of stock")

confirmation, err := getPayment (itemNumber)

if err '= nil {
return nil,

result, err :=

errors.New("insufficient funds")

shipItem (itemNumber)

27

supvest

Service 3

- ———=—==-=--Bvent - = === =-->>

Service

7 e, =

Service 1

reserveltem(itemNumber) .flatMap (getPayment) .flatMap (shipItem)

28

@lutzhuehnken@mastodon.social

supvest

The unreasonable effect of events:
Beyond asynchronous communication, being
event-driven has a massive effect on the
overall workflow and system design.
Event-Driven Architecture (EDA) is at least as

much about the flow as it is about the actual
events.

29

supvest

Mindbender:

We could treat a command like an event

Is..
Command An intention to perform an

operation or change a state

Event A fact, something that
undisputedly happened In
the past

@lutzhuehnken@mastodon.social

Expected Response

None (receiver is not
allowed to reject)

None (events are facts,
they can’t “fail”)

Communication Pattern

Fire-and-Forget

Fire-and-Forget

30

supvest

Maybe, instead of Event-Driven Architecture,
we should talk about microworkflows?

Microworkflow 1 |- = === = = = - Event = = = = = = = Microworkflow 2 L _ _ _ _ _ _ __ Event: = = = = = = = ~>

--------- Bvent: = === - - ">

Coming soon: https://microworkflows.org

@lutzhuehnken@mastodon.socia 31

supvest

The unreasonable effectiveness of events:
- scalability and resilience

- testability
- organizational clarity / domain boundaries

@lutzhuehnken@mastodon.socia

32

supvest
Enjoy the (load) testing

Fewer (no?) runtime dependencies to other services = simpler tests.

Testing an event-driven service (or a microworkflow) is still an
integration test.

But it’s nice to be able to test e.g. throughput in a very isolated way.

@lutzhuehnken@mastodon.socia

33

supvest

@lutzhuehnken@mastodon.social

Workflow

--------------- Request--------"-=---=->

Service 1
G Response- = === =-=---------
--------------- Request- - == - - o

Service A
<€ --mmmm - X ERROR X-=========-=
-------------- Request-------"---=--=->

Service 3
€ - m - Response- == =---=-=--====--

34

supvest

Important Patterns

@lutzhuehnken@mastodon.socia

853

supvest

Separate Observing from Control

n

i
OrderService - -Of‘d&(‘c P@_O\'teff(“ ‘>

@lutzhuehnken@mastodon.social

OrderStoatus

Po.t/men‘tSe_r‘vEQe —————

I nver\“tor‘yUPdc\‘t ed

A

i
OcrderPaid- - - ->

Invent orySe_r“vice

o

--- -Orole,r*SNpped- -->

36

supvest

Bring the data to the process

OrderStatus
A A A
| i |
| | |
} | |
| | |
| | 1
| i i
| | |
: ' :
|
OrderService |- - -OrderCreated- =>|PaymentService| - - - - OrderPaid- - - > renoryservice |~~~ -OrderShipped:- - >
A o
i !
) i
e cccccccccccccccaccccccccccccecccececcccaeeeen -
Inven‘toryUPda‘teo(

@lutzhuehnken@mastodon.social

37

supvest

OrderStoatus
A A
. :
| |
i |
| |
| i
| |
I |
| |
I |
OrderService -- -Orde_rc re_ate,d- —=>|P aymen‘csew;ce """ OPJCPP O\;A' B Inve_v\'toryService
A\ l
| 1
|
L o o o 1
Inven‘coryUPdod:ed

@lutzhuehnken@mastodon.social

\

- - - -OrderShipped- - >

38

supvest

Bonus models

@lutzhuehnken@mastodon.socia

£

supvest

Think Unix Philosophy

1. Make each program do one thing well. To do a new job, build afresh
rather than complicate old programs by adding new "features".

2. Expect the output of every program to become the input to another,
vet unknown, program.

S Cat file3.txt | grep “dwx” | tee filed.txt |

@lutzhuehnken@mastodon.social

as

40

supvest

Think Stream Processing

JU L . 1500100ED . UUUUUULL

@lutzhuehnken@mastodon.social

41

supvest

Think Actors

Client

@lutzhuehnken@mastodon.social

Supervisor

Actor

42

supvest

Bonus content:
The Saga Pattern Considered Harmful

@lutzhuehnken@mastodon.socia

43

supvest

@lutzhuehnken@mastodon.social

P t
StaﬁtOro(erSaga --------- > afmen ————,—, D> Iv\ve,nton/
]
|
|
|
|
|
Refund '
OrolerSaga __________ " ;
Cow\ple‘teo(Q < PN'/ ent <" """""""" g
P t
Star‘tOro(erSaga -------- > afmen ————,—, D> IV\Ve,nton/
]
|
|
|
|
|
Repund |
Oro(e_rSaga __________ |
Completed = Payment L S '

44

supvest

Event-Driven Architecture

enables scalability, resilience
promotes clear responsibility boundaries

@lutzhuehnken@mastodon.socia

45

supvest
Event-Driven Architecture

Thinking In events is not enough - you'll also
heed to think in terms of promises and
railways.

Make sure not to approach it with an imperative
mindset.

@lutzhuehnken@mastodon.socia

46

supvest

What do you think?
Let’s discuss!

Please rate your experience W WX W W

@lutzhuehnken@mastodon.social

https://linkedin.com/in/lutzh

https://www.reactivesystems.eu/

