
The Unreasonable Effectiveness
of Events

1

Mastodon @lutzhuehnken@mastodon.social

LinkedIn https://linkedin.com/in/lutzh

Blog https://www.reactivesystems.eu/

@lutzhuehnken@mastodon.social

Why me?

- Built my first message-driven, asynchronous system
for the Bundesbank in 2002

- Worked on various Event-Driven systems, e.g. for
Zalando, ING, ista, Maersk

- Currently building a bank (!) with Event-Driven
Architecture, Microservices, DDD

3

@lutzhuehnken@mastodon.social 44

@lutzhuehnken@mastodon.social 55

@lutzhuehnken@mastodon.social 66

@lutzhuehnken@mastodon.social 77

@lutzhuehnken@mastodon.social 88

@lutzhuehnken@mastodon.social

Reminder: Queries, Commands, Events

9

Is..

Query A request for information about
the current state of one or many
objects

Command An intention to perform an
operation or change a state

Event A fact, something that
undisputedly happened in the
past

@lutzhuehnken@mastodon.social 1010

@lutzhuehnken@mastodon.social 11

@lutzhuehnken@mastodon.social 12

@lutzhuehnken@mastodon.social

Reminder: Queries, Commands, Events

13

Is.. Expected Response

Query A request for information
about the current state of
one or many objects

The requested information

Command An intention to perform an
operation or change a state

A confirmation that the
command has been
executed, or an error
message if the command
failed

Event A fact, something that
undisputedly happened in
the past

None (events are facts,
they can’t “fail”)

@lutzhuehnken@mastodon.social

Reminder: Queries, Commands, Events

14

Is.. Expected Response Communication Pattern

Query A request for information
about the current state of
one or many objects

The requested information Request-Response

Command An intention to perform an
operation or change a state

A confirmation that the
command has been
executed, or an error
message if the command
failed

Request-Response

Event A fact, something that
undisputedly happened in
the past

None (events are facts,
they can’t “fail”)

Fire-and-Forget

@lutzhuehnken@mastodon.social

Reminder: Queries, Commands, Events

15

Is.. Expected Response Communication Pattern

Query A request for information
about the current state of
one or many objects

The requested information Request-Response

Command An intention to perform an
operation or change a state

A confirmation that the
command has been
executed, or an error
message if the command
failed

Request-Response

Event A fact, something that
undisputedly happened in
the past

None (events are facts,
they can’t “fail”)

Fire-and-Forget

But how can I know it’ll
be picked up and processed?

@lutzhuehnken@mastodon.social

Mental model 1/2
Thinking in Promises

16

@lutzhuehnken@mastodon.social

(-b)
A1 --->A2

(-OrderCreated)
PaymentService ---> OrderService

17

@lutzhuehnken@mastodon.social

Agents
Agents in Promise Theory are said to be autonomous, meaning that they are causally
independent of one another. This independence implies that they cannot be controlled
from without, they originate their own behaviours entirely from within, yet they can rely
on one another's services through the making of promises to signal cooperation.

Promises
Promises arise when an agent shares one of its intentions with another agent voluntarily,
e.g. by publishing its intent.

https://en.wikipedia.org/wiki/Promise_theory

18

https://en.wikipedia.org/wiki/Promise_theory

@lutzhuehnken@mastodon.social 19

Synchronous Command Asynchronous Command Asynchronous Event

@lutzhuehnken@mastodon.social

Events are
“fire-and-forget”...

… but based on previous
agreements (promises)

20

@lutzhuehnken@mastodon.social

Reminder: Queries, Commands, Events

21

Is.. Expected Response Communication Pattern

Query A request for information
about the current state of
one or many objects

The requested information Request-Response

Command An intention to perform an
operation or change a state

A confirmation that the
command has been
executed, or an error
message if the command
failed

Request-Response

Event A fact, something that
undisputedly happened in
the past

None (events are facts,
they can’t “fail”)

Fire-and-Forget
(rely on promises)But surely there’ll still b

e errors we need to handle?

@lutzhuehnken@mastodon.social 22

@lutzhuehnken@mastodon.social 23

@lutzhuehnken@mastodon.social

Mental model 2/2
Functional Programming

24

@lutzhuehnken@mastodon.social 25

@lutzhuehnken@mastodon.social 26

@lutzhuehnken@mastodon.social 27

item, err := reserveItem(itemNumber)
if err != nil {
 return nil, errors.New("out of stock")
}

confirmation, err := getPayment(itemNumber)
if err != nil {
 return nil, errors.New("insufficient funds")
}

result, err := shipItem(itemNumber)

@lutzhuehnken@mastodon.social 28

reserveItem(itemNumber).flatMap(getPayment).flatMap(shipItem)

@lutzhuehnken@mastodon.social

The unreasonable effectiveness of events:
Beyond asynchronous communication, being
event-driven has a massive effect on the
overall workflow and system design.
Event-Driven Architecture (EDA) is at least as
much about the flow as it is about the actual
events.

29

@lutzhuehnken@mastodon.social

Mindbender:
We could treat a command like an event

30

Is.. Expected Response Communication Pattern

Command An intention to perform an
operation or change a state

None (receiver is not
allowed to reject)

Fire-and-Forget

Event A fact, something that
undisputedly happened in
the past

None (events are facts,
they can’t “fail”)

Fire-and-Forget

@lutzhuehnken@mastodon.social

Maybe, instead of Event-Driven Architecture,
we should talk about microworkflows?

31

Coming soon: https://microworkflows.org

@lutzhuehnken@mastodon.social

The unreasonable effectiveness of events:

- scalability and resilience
- testability
- organizational clarity / domain boundaries

32

@lutzhuehnken@mastodon.social

Enjoy the (load) testing

33

Fewer (no?) runtime dependencies to other services = simpler tests.

Testing an event-driven service (or a microworkflow) is still an
integration test.

But it’s nice to be able to test e.g. throughput in a very isolated way.

@lutzhuehnken@mastodon.social 34

@lutzhuehnken@mastodon.social

Important Patterns

35

@lutzhuehnken@mastodon.social 36

Separate Observing from Control

@lutzhuehnken@mastodon.social 37

Bring the data to the process

@lutzhuehnken@mastodon.social 38

@lutzhuehnken@mastodon.social

Bonus models

39

@lutzhuehnken@mastodon.social

Think Unix Philosophy

1. Make each program do one thing well. To do a new job, build afresh
rather than complicate old programs by adding new "features".

2. Expect the output of every program to become the input to another, as
yet unknown, program. ...

40

$ Cat file3.txt | grep “dwx” | tee file4.txt | wc –l

@lutzhuehnken@mastodon.social

Think Stream Processing

41

@lutzhuehnken@mastodon.social

Think Actors

42

Supervisor

ActorClient

@lutzhuehnken@mastodon.social

Bonus content:
The Saga Pattern Considered Harmful

43

@lutzhuehnken@mastodon.social 44

@lutzhuehnken@mastodon.social

Event-Driven Architecture

enables scalability, resilience
promotes clear responsibility boundaries

45

@lutzhuehnken@mastodon.social

Event-Driven Architecture

Thinking in events is not enough - you’ll also
need to think in terms of promises and
railways.

Make sure not to approach it with an imperative
mindset.

46

What do you think?
Let’s discuss!
Please rate your experience ⭐⭐⭐⭐⭐

47

Mastodon @lutzhuehnken@mastodon.social

LinkedIn https://linkedin.com/in/lutzh

Blog https://www.reactivesystems.eu/

