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4.2 |[F STATEMENT
IF statements have two forms [...]: numerical and logical.
4.2.1 Numerical IF Statements

Numerical IF statements are of the form: |IF (expression)
Nn1,N2,N3 where n1,n2,n3 are statement numbers. [...] All three
statement numbers must be present. The expression may not
be complex. |[...]

4.2.2 Logical IF Statements

Logical IF statements have the form: IF (expression)S where S
IS a complete statement. The expression must be logical. S
may be any executable statement other than a DO statement
or another logical IF statement (see Chapter 2, Section 2.3.2).

...]

| FORTRAN IV Reference Manual, 1971 ]



if-stmt .= IF ( expr ) num+ , numsz , NUM3
| IF ( expr) plain-stmt

| context-free grammar / BNF, ca. 1958 |



14.9.2 The if-then-else Statement

An if-then-else statement is executed by first evaluating the Expression. If
the result is of type Boolean, it is subject to unboxing conversion (§5.1.8).

It evaluation of the Expression or the subsequent unboxing conversion (it
any) completes abruptly for some reason, then the if-then-else statement
completes abruptly for the same reason.

Otherwise, execution continues by making a choice based on the
resulting value:

* |fthe value is true, then the first contained Statement (the one before
the else keyword) is executed; the if-then-else statement completes
normally if and only of execution of that statement completes normally.

* |f the value is false, then the second contained Statement (the one after
the else keyword) is executed; the if-then-else statement completes
normally if and only of execution of that statement completes normally.

| The Java Language Specification, Java SE 21 Edition |



13.6.7 Runtime Semantics: Evaluation
[fStatement : if ( Expression ) Statement else Statement

1. Let exprRef be the result of evaluating Expression.
. Let exprValue be ToBoolean(GetValue(exprRef)).
. ReturnIfAbrupt(exprlalue).
It exprValue 1s true, then
a. Let stmtCompletion be the result of evaluating the first Statement.
. Else
a. Let stmtCompletion be the result of evaluating the second Statement.
. ReturnlfAbrupt(stmtCompletion).
It stmtCompletion.[[value]] 1s not empty, return stmtCompletion.
. Return NormalCompletion(undefined).

| ECMASCcript 2015 Language Specification |



if ( true ) stimt+ else stmto —— Stmt-

if ( false ) simty else stimto —— Stmt»

| structured operational semantics / SOS, ca. 1980 |



2.17.3 Linking: Verification, Preparation, and Resolution

..

Verification ensures that the binary representation of a class or interface 1s
structurally correct. For example, 1t checks that every instruction has a valid
operation code; that every branch instruction branches to the start of some
other instruction, rather than into the middle of an instruction; that every
method 1s provided with a structurally correct signature; and that every
instruction obeys the type discipline of the Java programming language.

If an error occurs during verification, then an instance of the following
subclass of LinkageError will be thrown at the point that caused the class

to be verified:

« VerifyError: The binary definition for a class or interface failed to pass a
set of required checks to verify that it cannot violate the integrity of the
Java virtual machine.

| The Java Virtual Machine Specification, First Edition |
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Formal Semantics
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that no rule Is missing or unreachable

that the rules are unambiguous

that it's well-defined, sound, decidable, deterministic, etc.
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language-independent
platform-independent
hardware-independent
fast to execute

safe to execute
deterministic

easy to reason about

compact

easy 10 generate
fast to decode
fast to validate
fast to compile
streamable

parallelisable



Wasm ...is fully formalised

from the of source code to the of memory at execution



a S Just a

bytecode decoding = parsing
pbytecode validation = type checking

bytecode execution = evaluation

...all textbook PL theory techniques apply!



Defining a language

concrete syntax

AST

static semantics dynamic semantics



apstract syntax



(value type) t =132 | i64 | f32 | 64 | v128 | funcref | externref | ...
(function type)  ft = t" > "

unop .= neg | abs
binop ::= add | sub | mul | ...
relop :=eq | ne |t | gt]|le]| ge]| ..
cutop ::= convert | reinterpret | ...
(instruction) instr = t.constc | t.unop | t.binop | t.relop | t.cutop.t | ...
ref.null | ref.func x | nop | drop | select | unreachable | ...
block ft instr* | loop ftinstr* | if ft instr* else instr* | ...
bri | br_ifi | br_table i+ | call x | call_indirect ft x | return | ...
local.get x | local.set x | local.tee x | global.get x | global.set | ...
table.get x | table.set x | table.size x | table.grow x | ...
t.load.n? x | t.store.n?” x | memory.size x | memory.grow x | ...
(function) func ::= func ft (local t¥) e* im ::= import “‘nm” func ft ex = export ‘nm” func x
(global) glob ::= global mut’ ¢ e* import ‘nm” global mut” ¢ export “nm” global x
(table) tab ::= table [n.m]t e” import ‘nm” table [n..m] ¢ export ‘nm” table x
(memory) mem .= memory [n..m] import ‘nm” memory [n..m] export “nm” memory x

(moaule) mod ::= module im* func* glob™ tab® mem” ex”



aynamic semantics



(132.const 20)
(132.const 22) — (132.const 42)
(132.add)



(t.const c1) (t.const ¢o) (t.add) — (t.const c1 +: c2)

(1I32.const 1)

(132.add)

program when reduced entirely to values
spoiler: poroves that this is the only way



instr —  instr”

small-step rules
the program step by step
until it consists only of

instr 2 val ::= t.constc | ref.null | ref.func x



(block 3 (loop 3

(Blr ) (Blr )



control flow

(block (loop ‘>
(br i) (br i)
) ) )

break continue



(block val®) — val”

(block val® (br O) instr*) — &€

(block val* (bri +1) instr) — (br i)

instr 2 val ::= t.constc | ref.null | ref.func x



S :instr* —  §:instr”

generalise to reduction over
s IS Just more syntax...

s .= {globals val*, tables (val*)*, memories (byte*)"}



s ; (1I32.const i) (i64.load x) — s ; (I64.const ¢)
iff s.memories|x][i .. i+7] = bytesis4(c)

s (I32.const i) (iI64.const ¢) (i64.store x) — s';¢
iff s' = s with memories|x]|i .. i+7] = bytesisa(c)



(store) s

(instances) st
tabinst
meminst

(closures)

(values)

(administrative operators)
(local contexts)

. ! ]k ]k
Reduction s;v*yet = sv' e

s;v*; Lk[e*] <, /50" LE[e'*

(t.const c¢) t.unop

(t.const c1) (t.const c3) t.binop
(t.const c1) (t.const c2) t.binop
(t.const c) t.testop

(t.const c1) (t.const c2) t.relop

(t1.const ¢) ty.convert t;_sz’

(t1.const ¢) tz.convert t;_sz’
(t1.const c) t2.reinterpret t;

unreachable

nop

v drop

v1 v2 (i32.const 0) select

v1 v2 (i32.const k + 1) select
v" block (t7 — t3") * end

v" loop (11 — t3") e* end
(i32.const 0) if ¢f e] else e5 end
(i32.const k + 1) if tf e] else e; end
label{t";e*} v* end

label{t*; e*} trap end
label{t";e*} L’ [v"™ (br j)] end
(i32.const 0) (br_if 7)
(i32.const k + 1) (br_if j)
(i32.const k) (br_table j¥ j j3)
(i32.const k + n) (br_table jf j)
s;call y

s; (i32.const j) call_indirect tf
s; (i32.const j) call_indirect tf
v" (call cl)

local{i;v; } v* end

local{i; v;" } trap end

local{i; v; } L*"![return] end

. fu{ v vh: get_local j

v] v vk (set_local §)

v (tee_local j)

s; get_global j

s; v (set_global j5)

s; (132.const k) (t.load a o)

s; (i32.const k) (t.load tp_sz a o)
s; (i32.const k) (t.load tp_sz” a o)
s; (i32.const k) (t.const ¢) (t.store a o)
)

)

s; (i32.const k) (t.const ¢) (t.store tp a o
s; (132.const k) (t.const c) (t.store tp’ a o
s; current_memory]|
; (i32.const k) grow_memory
; (i32.const k) grow_memory

]

{inst inst™, tab tabinst™, mem meminst™}
{func cl*, glob v*, tab i’, mem i’}

cl*

b*

{inst i, code f}
t.const c

... |trap | call ¢l | label{t*;e"} ¢* end | local{i; v* } ¢* end
’l)* [_] e*

v* label{t*;e*} L* end e*

] *

siv*e* < s e
s;vg;local{i; v*} e* end —; s’;v3; local{i;v'*} e¢'* end

t.const unop,(c)
t.const c

trap

i32.const testop,(c)
132.const relop,(c1, c2)

to.const ¢

trap
ta.const consty, (bitse, (¢))

trap
€

€

V2
(%1

label{t5"; e} v" ¢* end

label{t7;loop (t7 — t3') e" end} v™ e* end
block tf e5 end

block tf e] end

U*

trap

v e’

€

brj

br j

br j

call sfunc(7, )
call st (3, j
trap

R AN

S

.

%

trap
local{i;v;} L*"*[br k] end

v

J oy k.
V] U Vg;€

v v (set_local j)

Sglob (7, J)
s';e

U

. .

)

t.const const(b*
t.const const;” (b

trap
s'ie

)

.

s’ e
trap
132.const |Smem (2, *)|/64 Ki

S S .

A

)

—; i32.const (—1)

Figure 1. Small-step reduction rules

(where f is not an import and has all exports ex™ erased)

s;v e’ < 50" e”

if ¢ = binop,(c1, c2)
otherwise

?
if ¢’ = cvtil 4, (c)
otherwise

if Stab (7, )code = (func tf local t* e*)

otherwise

local{ clinst; v™ (t.const 0)"} block (e — t5*) e* endend ...
v | ...if cleode = (Func (17 — t5") local t* e*)

if s’ = s with glob(i,7) = v

) if Smem (%, k + 0, [t]) = b*
*) if Smem (2, k + o, [tp|) = b*

otherwise

if s = s with mem(4, k + o, |t|) = bitsl’! (¢)
if s = s with mem(i, k + o, |tp|) = bitsl?!(c)

otherwise

s'1i32.const |Smem (i, %)|/64Ki if s’ = s with mem(4, %) = Smem (4, *) (0)" 64K

[PLDI 2017]



static semantics



(1I32.const 2) & 32
(1I32.const 5) £ 2132 £ 132
(1I32.add) 132132 = 132



instr” . t1m = 2"

t1* are the types of values from the stack
to* are the types of values to the stack



t.constc : € 2t

tadd @ttt

instr1™: t17 — to" instro2" : to2" — t3”

instr1™ instr2" @ t1* — t3*

instr™: t17 = to~
instr™ : to" t17 — to” to~



C.globals|x| = ¢
global.getx : € = ¢

C records types of declarations in scope

C ::= {globals t*, tables t[n..m|*, memories i18[n..m|", labels (*)*}



C + instr® : t17 = t2”



C.globals|x| = ¢
C ~ global.getx : € =t

C, labels t2* + instr® . t17 = t2~ ft=t1" =t~
C + Dlock ft instr™ : t17 = t2”

C.labels|l] = t*
CrHbrl:th—e¢



(contexts) C == {func tf*, global tg*, table n’, memory n’, local t*, label (t*)*}

Typing Instructions Chke:tf

C'htconstc:e —t Cttaunop :t —t CFt.binop :tt —t C = t.testop : t — 132 C = t.relop : tt — 132
t1 £ty sz =eo (ti=inAta=in Alt| <|t2]) V (t1 = fn Aty = fn) t1 £ta  |t1] = |tz
C | ti.convert to_sx” : ta — 1 C | ti.reinterpret to : to — 1

C - unreachable : t7 — t} Chknop:e— e Chkdrop:t—e€ Clselect :t1i32 — ¢
tf =t — t5 C, label (t3*) - e* : tf tf =t — t5 C, label (t7) F e* : tf
C' I~ block tf e* end : tf C - loop tf e* end : tf
tf =tT — t3° C, label (t3*) - €7 : tf C, label (t3*) - e5 : tf
C -if tf e] elsee; end : t7 132 — tT°

Clabel(7) = t* Clabel(2) = t* (Claber (1) = t*) T
Clkbri:tyts —t5 C Fbr.ifi:t*i32 — t* C I br_table ™ : t7 t*i32 — t3

Clabel(‘clabd' - 1) =t" C(func(i) — tf tf — tT — t; CYtable =N

C - return : t7 t* — 13 Clcalli: tf C I- call_indirect tf : t7 132 — t3

Clocal(i) =1 C'Iocal(@') =t C1Ioca|('5-) =1 Cglobal@) = mut? t Cglobal(i) = mutt
Ctgetlocali:e —+t C(Clrsetlocali:t—¢ ClrHteelocali:t—t CFgetglobali:ec—t (I setglobal?:t— ¢

Cmemory = T 2% < (|tp| <)°|t] (tp_sz)’ =eVt=im Cmemory = N 2% < (|tp| <)°|t] tp" =eVit=im
C + t.load (tp_sz)* a0 :i32 — t Ctt.storetp’ ao:i32t — ¢
Cmemory = T Cmemory = T
C' - current_memory : € — 32 C' - grow_memory : i32 — i32
Chrel:ti =>t; Clex:t; —t3 Cke*:t] = t5
Che:e—e Clejer:t; =13 Chke*:t t; = t*t3

Typing Modules
tf =tf —t5  C,localt] t*,label (t3) F e* : e — t3 tg=mut’'t Cle* :e—>t ex*=cVig=t
C' F ex* func tf local t* e* : ex* tf C' I ex* global tg e* : ex* tg
(Crunc(2) = tf)"

C I ex* tablen ™ : ex* n Ct ex*memoryn : ex*n

tg =1
Cltex*funcitfim:ex*tf CF ex*globaltgim:ex*tg CF ex*tablenim:ex*n CF ex* memorynim :ex*n

(CF frexstf)”  (Cil glob; : exg ty,;)i (CF tab: exf n)’ (CF mem: e:f:;l n):
(C; = {global tg"~*}): C = {func tf*, global tg*, table n", memory n"} ey ery exy exy, distinct

- module f* glob* tab’ mem?

Figure 1. Typing rules

[PLDI 2017]




SOUNANESS



If and ,

then either diverges,
olt
such that anad

That is, there iIs no undefined behaviour!



soundness has been multiple times
... With such as Cog and Isabelle



going next-level:



End-to-end formalisation
... formal specification i1s centerpiece of the official language standard
But for reasons, folks also want plain English

... prose specification also Is part of the language standard



WebAssembly Specification, Release 2.0 (Draft 2023-03-22) WebAssembly Specification, Release 2.0 (Draft 2023-03-22)

C.return is absent (set to €) when validating an expression that is not a function body. This differs from it being br
set to the empty result type ([¢]), which is the case for functions not returning anything.

1. Assert: due to validation, the stack contains at least [ + 1 labels.

2. Let L be the [-th label appearing on the stack, starting from the top and counting from zero.
call z 3. Let n be the arity of L.
* The function C.funcs[z] must be defined in the context. 4. Assert: due to validation, there are at least n values on the top of the stack.
* Then the instruction is valid with type C.funcs[z]. 5. Pop the values val™ from the stack.
C.funcs[z] = [t]] — [t3] 6. Repeat [ + 1 times:

Ctcallz: [t7] — [t3] a. While the top of the stack is a value, do:

i. Pop the value from the stack.

call indirect x
- 4 b. Assert: due to validation, the top of the stack now is a label.

The table C'.tables[z] must be defined in the context. c. Pop the label from the stack.

Let limits t be the table type C.tables[z]. 7. Push the values val™ to the stack.

The reference type ¢ must be funcref. 8. Jump to the continuation of L.

The type C.types[y] must be defined in the context.

Let [t1] — [£3] be the function type C.types[y]. label,, {instr*} B'[val™ (brl)]end < wal®™ instr*
Then the instruction is valid with type [t} i32] — [t3].

C.tables[z] = limits funcref  C.types[y] = [t]] — [t3] br_it L

C - call_indirect z y : [t] i32] — [t3] 1. Assert: due to validation, a value of value type i32 is on the top of the stack.

2. Pop the value i32.const ¢ from the stack.

3. If ¢ is non-zero, then:

3.3.9 Instruction Sequences

a. Execute the instruction (br [).
Typing of instruction sequences is defined recursively. 4. Else:

a. Do nothing.
Empty Instruction Sequence: ¢

» The empty instruction sequence is valid with type [t*] — [t*], for any sequence of operand types ¢*. (i32.const c) (br_if 1) : (br i) (if ¢ # 0)

(i32.const ¢) (br_if 1) € (if c=0)

Cle:[t] — [t*]
br_table I* I

Non-empty Instruction Sequence: instr* instry .
1. Assert: due to validation, a value of value type i32 is on the top of the stack.

The instruction sequence instr* must be valid with type [t]] — [t3], for some sequences of operand types 2. Pop the value i32.const i from the stack.
t7 and ¢3.
! 2 3. If 7 is smaller than the length of [*, then:

The instruction instry must be valid with type [t*] — [t3], for some sequences of operand types ¢* and ¢3.
a. Let [; be the label [*[i].

There must be a sequence of operand types ¢4, such that t5 = ¢, '~ where the type sequence ¢'* is as long

ast*. b. Execute the instruction (br I;).

For each operand type ¢/ in t'* and corresponding type ¢; in t*, ¢} matches ¢;. 4. Else:

Then the combined instruction sequence is valid with type [t]] — [t t3]. a. Execute the instruction (br Iy).

C I instr* : [t7] — [t t'"] F[t7] < [t*] C & instry : [t*] — [t§]
C |- instr* instry : [t}] — [t§ t3]

(i32.const 1) (br_table I* I )
(i32.const 1) (br_table I* Iy)

(brl;) (if I*[i] = 1;)

(_>
< (brly)  (f|I*| <4)

Chapter 3. Validation 4.4. Instructions 115




Prose essentially iIs a manual of the formal rules
...200 pages instead of 2, extremely
...plus, for reasons, the entire spec had to be written In
Both formats are error-prone and make for nightmarish
...Latex is a language

...markdown verbose;



Wasm currently has

38 proposals (making up Wasm 2.0)
25+ poroposals
Every new proposal needs to formal and prose rules
Diffs for proposals range from (spec document, interpreter, test suite)

Proposal champions also need to extend the

...essentially, yet another rendering of the formal rules in



for this!




A Wasm Spec DSL

Single
Easy to , , QItf, and . meta-level error checking
Transformable into all the aforementioned representations

...Sufficient for rendering, - and modelling

One frontend — many backends



Instr_ok: context |- 1instr : functype (show "T"

Instr_ok/nop:

C |- NOP : epsilon -> epsilon context - instr : functype

Instr_ok/block:

C |- BLOCK bt instr* : t 1* -> t 2% C}—nOpte—)G[T-NOP]

-- Blocktype ok: C |- bt : t 1* -> t 2%

-- InstrSeq ok: C, LABEL t 2* |- instr* : t 1* -> t 2% CF bt: tf — t; C, label t-; - instr* - tik - tg [ ]

QAT o T 1. .+ . .. |T-BLOCK

Instr_ok/loop: C F block bt instr™ : tf — &3

C |- LOOP bt instr* : t 1* -> t 2% .

-- Blocktype ok: C |- bt : t 1* -> t 2* CEbW:tf =t C,label t{ F instr™ : tf — to T |

-- InstrSeq ok: C, LABEL t 1* |- dinstr* : t 1* -> t 2 C F loop bt instr™ : t* — t -LOOP
IS EF_Ol</ 100 C.label[l] = t* C'.label[l] = t*

C |- BR 1 : t 1% t* -> t_2* ——————————— [T-BR] ———————— [T-BR.IF|

—- iff C.LABEL[1l] = t* Chkbril:tftr—1t; Cktbrif l:t*i32— t*

Instr _ok/br_ if: (F t* < C.labelll])* - t* < C.label|l']

C |- BRIF 1 : t* I32 -> t* TR ”
o iff CLLABEL[1] = t* C \ br_table [* I" : tf t* — t;

[ T-BR_TABLE]

Instr_ok/br_table:
C |- BR_TABLE 1* 1" : t 1* t* -> t 2%
-- (Resulttype sub: |- t* <: C.LABEL[1])*




Step _pure: config ~> config

Step_pure/nop:
NOP ~> epsilon

Step pure/block:
val™k (BLOCK bt instr*) ~> (LABEL n  {epsilon} val”k instr¥*)
-- iff bt = t 1™k -> t 2%n

Step_pure/100p:

val™k (LOOP bt instr*) ~> (LABEL n {LOOP bt instr*} val”™k instr¥*)
-- iff bt = t 1™k -> t 2%n

nop — €
Step pure/br-zero: . . . N : n
(LABEL n'{instr'*} val'* val®n (BR 0) instr*) ~> val®n instr'* val® (block bt instr*) —  (label,{€} val® instr*) if bt = tf — &
val® (loop bt instr*) < (label, {loop bt instr*} val® instr*) if bt = tF — t3
Ste ure/br-succ: . * * n : x n . *
(LABELpﬁP{instr'*} val* (BR $(1+1)) instr*) ~> val* (BR 1) Uabdn{jnst*}znd' val™ (br 0) instr*) < wval™ instr’
- (label,{instr""} val® (br I + 1) instr*) < wval® (br )
Step_pure/br_if-true: (i32.const ¢) (br_if 1) — (br 1) if ¢ #0
(CONSTT32 ©) (BRIF 1)~ (B8R 1) (mconst ) (b F 1 S e 20
(i32.const %) (br_table I* ') —  (br I*[i]) if ¢ < |I*]
Step_pure/br_if-false: (i32.const 4) (br_table I* 1) — (br 1) if ¢ > |I*]
(CONST I32 c¢) (BR_IF 1) ~> epsilon
- iff c = 0

Step pure/br_table-1t:
(CONST I32 i) (BR_TABLE 1* 1') ~> (BR 1*[1i])
-- iff 1 < |1%*|

Step pure/br_table-le:
(CONST I32 i) (BR_TABLE 1* 1') ~> (BR 1")
-- iff 1 >= |1%*|



nop

1. Do nothing.

[Enorlnop <> €
block bt instr*

. Let tlk — 1™ be bt.
. Assert: Due to validation, there are at least k£ values on the top of the stack.
. Pop val® from the stack.

. Let L be the label whose arity is n and whose continuation is .
. Push L to the stack.
Step_pure: config ~> config . Push val* to the stack.
. Jump to instr®.
Step_pure/nop:
NOP ~> epsilon [E-srock]val® (block bt instr*) <  (label, {€} val® instr*) if bt = tF — 3
Step pure/block:
val™k (BLOCK bt instr*) ~> (LABEL n  {epsilon} val”k instr¥*)

loop bt instr*

- iff bt = t 1/\k -> t 2/\n . Lett,* — to™ be bt.
- a . Assert: Due to validation, there are at least k£ values on the top of the stack.
Step_pu re/loop . . Pop val® from the stack.
val”k (LOOP bt 1'nstr*) ~> (LABEL_I’]\ {LOOP bt 1'nstr*} val”™k 1'nstr*) . Let L be the label whose arity is k and whose continuation is loop bt instr*.

-- 1ff bt = t_]_/\k -> t_z/\n . Push L to the stack.

. Push wal* to the stack.
Step pure/br-zero:

(LABEL n  {instr'*} val'* val™n (BR 0) instr*) ~> wval”™n instr'*

[E-coor]val® (loop bt instr*) < (label{loop bt instr*} val® instr*) if bt = tF — 2

Step_pure/br-succ:
(LABEL n {instr'*} val* (BR $(1+1)) instr*) ~> wval* (BR 1)

. Let L be the current label.
Step pure/br_if-true: . Let n be the arity of L.
(CONST 132 C) (BR_IF 1) ~ (BR 1) . Let instr’* be the continuation of L.
-- 1ff ¢ =/=10 . Pop all values z;* from the stack.
Step_pure/br_1' f-false: . Exit current context.
(CONST 132 C) (BR_I = 1) > epS1' lon . If g is 0 and the length of x,* is greater than or equal to n, then:
-- iff c = 0 a. Letval’”* val™ be x1*.
b. Push val™ to the stack.
Step_pu re/ br_table -1t: c. Execute the sequence instr'*.
(CONST 132 1 ) (BR_TABLE 1* 1 ) ~> (BR 1* ['I ] ) . If z( is greater than or equal to 1, then:
-- iff 71 < |]_*| a. Letlbe zg — 1.
b. Let val* be x;*.
Step—pu re/br_table— le: c. Push val* to the stack.
(CONST I32 1) (BR_TABLE 1* 1') ~> (BR 1")
- iff i >= |1*| — d. Execute br [.

[E-sr-zeo] (label,, {instr’*} val'™ val™ (br 0) instr*) < wval™ instr’"

[E-sr-succ] (label , {instr’"} val® (br I + 1) instr*) < wal* (br )
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A Type-Theoretic Interpretation of Standard ML*

Robert Harper and Christopher Stone
{rwh,cstone}@cs.cmu.edu

School of Computer Science
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213-3891

1 Introduction

It has been nearly twenty years since Robin Milner introduced ML as the metalanguage of the LCF interactive
theorem prover [5]. His elegant use of abstract types to ensure validity of machine-generated proofs, combined
with his innovative and flexible polymorphic type discipline, and supported by his rigorous proof of soundness
for the language, inspired a large body of research into the type structure of programming languages.! As a
design tool type theory gives substance to informal ideas such as “orthogonality” and “safety” and provides
a framework for evaluating and comparing languages. As an implementation tool type theory provides
a framework for structuring compilers and supports the use of efficient data representations even in the
presence of polymorphism [28, 27].

Milner’s work on ML culminated in his ambitious proposal for Standard ML [17] that sought to extend ML
to a full-scale programming language supporting functional and imperative programming and an expressive
module system. Standard ML presented a serious challenge to rigorous formalization of its static and dynamic
semantics. These challenges were met in The Definition of Standard ML (hereafter, The Definition), which
provided a precise definition of the static and dynamic semantics in a uniform relational framework. A
key difficulty in the formulation of the static semantics of Standard ML is to manage the propagation of
type information in a program so as to support data abstraction while avoiding excessive notational burdens
on the programmer. This is achieved in The Definition through the use of “generative stamps”™. Roughly
speaking, each type is assigned a unique “stamp” that serves as proxy for the underlying representation
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Abstract

We present an internal language with equivalent expressive power
to Standard ML, and discuss its formalization in LF and the
machine-checked verification of its type safety in Twelf. The in-
ternal language is intended to serve as the target of elaboration in
an elaborative semantics for Standard ML in the style of Harper and
Stone. Therefore, it includes all the programming mechanisms nec-
essary to implement Standard ML, including translucent modules,
abstraction, polymorphism, higher kinds, references, exceptions,
recursive types, and recursive functions. Our successful formaliza-
tion of the proof involved a careful interplay between the precise
formulations of the various mechanisms, and required the invention
of new representation and proof techniques of general interest.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics; Syntax;
E3.1 [Logics and Meanings of Programs]: Specifying and Veri-
fying and Reasoning about Programs—Mechanical verification

General Terms Languages, Verification

Keywords Standard ML, language definitions, type safety, mech-
anized metatheory, logical frameworks, Twelf

1. Introduction

A formal definition of a programming language provides a rigor-
ous, implementation-independent description of the semantics of
well-formed programs. By giving a precise meaning to programs
a formal definition provides the foundation for building a commu-
nity of users, for ensuring compatibility of implementations, and
for proving properties of the language and programs written in it.
But a formal definition does not stand on its own, but must be sup-
ported by a body of metatheory that establishes both its internal
consistency and coherence with external expectations.

The formal definition of a full-scale programming language can
easily run into hundreds of pages, as exemplified by The Definition
of Standard ML [21]. Verifying the metatheory of such a language
taxes, or even exceeds, human capabilities. Absent complete ver-
ification, the best alternative is to employ well-established meth-
ods, such as type systems and operational semantics, supported by

* This work is supported by the National Science Foundation under grant
ITR/SY+SI 0121633 and a Graduate Research Fellowship, and by a grant
from the Alfred P. Sloan foundation.
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small case-studies that expose pitfalls. But even using these best
practices, errors and inconsistencies arise that are not easily dis-
covered. Moreover, as languages evolve, so must the metatheory
that supports it, introducing further opportunities for error.

A promising approach to reducing error is to use mechanized
verification tools to ease the burden of proving properties of
language definitions. Ideally, a language definition would come
equipped with a body of metatheory that is mechanically checked
against the definition and that can be extended as need and interest
demands. With the development of powerful tools such as mechani-
cal theorem provers and logical frameworks, it is becoming feasible
to put this idea into practice. For example, Klein and Nipkow [17]
have recently used the Isabelle theorem prover [23] to formalize
a large part of the Java programming language and to prove type
safety for it.

In this paper we report on the use of the Twelf implementa-
tion [27] of the LF logical framework [12] to verify the type safety
of the full Standard ML programming language. To our knowledge
this is the first mechanical verification of safety for a language of
this scale. The first mechanical formalizations of significant subsets
of The Definition of Standard ML were performed independently
by Syme [36] and Vanlnwegen and Gunter [39] using HOL [10]
for the purpose of establishing determinicity of evaluation. An at-
tempt by Vanlnwegen [38] to prove type safety was partially suc-
cessful, but ran into difficulties with the formalism of The Def-
inition of Standard ML, the immaturity of verification tools and
methodology at that time, and the unsoundness of the language it-
self. Our approach draws on intervening experience with logical
frameworks [12, 27] and with formalizing language definitions us-
ing type-theoretic techniques [16]. Perhaps the most significant les-
son to be drawn from VanInwegen’s and our experience is that lan-
guage definitions must be formulated with mechanical verification
of metatheory in mind. The formulation of the definition provides
the framework for verification, but the demands of verification must
also be permitted to influence the definition. Just as programs ought
to be written in conjunction with proofs of their key properties, so
too must language definitions be developed hand-in-hand with their
verification.

2. Overview

Our approach is based on the type-theoretic definition of Standard
ML given by Harper and Stone [16]. The Harper-Stone semantics
divides the definition of the language into two aspects:

1. Elaboration, which translates the external language, the ab-
stract syntax of Standard ML, into the internal language, a well-
behaved type theory based on the translucent sums formalism
of Harper and Lillibridge [14]. Elaboration performs type re-
construction, overloading resolution, equality compilation, pat-
tern compilation, and coercive signature matching, resulting in
a well-typed term of the internal language.
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(module

(import "env"' "mem" (memory 10))
(export'sum" (fune $sum))

(func $sum (param $ptr i32) (param $end i32) (result f64)

(local >r To&]
(f64'COnSt O)

(set_local $r)
(

loop $continue

(get_local $ptr)

(get_local $end)

(i32.1t)

(if
(get_local $r)
(get_local $ptr)
(f64.load)
(f64.add)
(
(

set_local $r)

get_local $ptr)
(i32.const 8)
'132.add)

(setlocal $ptr)

(br $continue)

)
)
(get_local $r)
)
)

o I N Y ~ W &}

;; ptr < end

;= *ptr

iy ptr++

double su;

m(double* ptr, double* end) {

double r = 0.0;
while (ptr <end) {
r += *ptr++;

)

return r;



(block $I (result i32) (loop 3! (param i32)

(br 3l) (i32.const 5)) (br $l) (i32.const 5))



t.constc : € >t

tadd : tt—t
g:&€—¢

instr1* : t1* — to~ instr2" : to* = 3"

instr1™ instr2" @ t1* — t3*






