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About Me

Lecturer at the University of Strathclyde (Glasgow, Scotland)

Interested in:
▶ Generic Programming and Proving
▶ Meta Programming and Proof Search
▶ Type-Directed Partial Evaluation
▶ Implementations of Type Theory
▶ Interactive Developer Tooling

Overarching Theme: Correctness by Construction
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Sequential work

One worker mapping the transformation on an array.

Can we maybe share the load?
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Concurrent work

Three workers mapping the transformation on a shared array.

Faster... but wronger!
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Hoare logic

A logic for imperative programs.
A memory model.
Statements of the form

{P}c{Q}
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Hoare logic

A logic for imperative programs.
A memory model.
Statements of the form

{P}c{Q}

Assuming that initially P holds

After executing the command c

We can guarantee that Q will hold
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Assignment Axiom

{ℓ 7→ _} ℓ := 0 {ℓ 7→ 0}
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Assignment Axiom

{ℓ 7→ _} ℓ := 0 {ℓ 7→ 0}

Assuming that ℓ is a valid location

Assigning 0 to ℓ

Ensures that ℓ points to 0
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Sequential Execution Axiom

{P}c1{Q} {Q}c2{R}
{P}c1; c2{R}
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Sequential Execution Axiom

{P}c1{Q} {Q}c2{R}
{P}c1; c2{R}

If c1 takes us from P to Q

And c2 takes us from Q to R

Then the composition c1; c2 takes us from P to R
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A proof: swap with no allocation

{ℓ1 7→ a∧ ℓ2 7→ b}

ℓ1 := xor(ℓ1, ℓ2);

{ℓ1 7→ xor(a,b)∧ ℓ2 7→ b}

ℓ2 := xor(ℓ1, ℓ2);

{ℓ1 7→ xor(a,b)∧ ℓ2 7→ a}

ℓ1 := xor(ℓ1, ℓ2);

{ℓ1 7→ b∧ ℓ2 7→ a}
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Combining proofs

{P}c1{Q} {Q}c2{R}
{P}c1; c2{R}

The sequential composition rule is, ironically, anti-compositional: each subprogram
needs to talk about the entire world no matter what they actually use!
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What we get: nonsense!

We have: P = ℓ 7→ 1 and Q = ℓ 7→ 0
We pick: R = ℓ 7→ 1

�

ℓ 7→ 1
	

ℓ := 0
�

ℓ 7→ 0
	

{P}c{Q}
{P∧ R}c{Q∧ R}

Nothing actually enforces that R is independent from P & Q!
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What we build: a separating conjunction

▶ Make predicates support-aware
▶ Disallow claims over overlapping memory regions

Predicate Support

Purely logical m+ n = 3

Points to ℓ 7→ v

Conjunction P ∗ Q ?
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What we build: a separating conjunction
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▶ Overlapping

∗ =

If this is P’s support
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Then P ∗ Q is defined as P∧ Q and has this support
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What we build: a separating conjunction

▶ Non-overlapping:

∗ =

▶ Overlapping

∗ =

If this is P’s support
and this Q’s support

Then this is not a valid support.

P ∗ Q collapses to the absurd predicate ⊥
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What we obtain: the frame rule

{P}c{Q}
{P ∗ R}c{Q ∗ R}

Motivation Hoare Logic Separation Logic Correct by Construction # 18



What we obtain: the frame rule

{P}c{Q}
{P ∗ R}c{Q ∗ R}

If R is true and non-overlapping

Motivation Hoare Logic Separation Logic Correct by Construction # 18



What we obtain: the frame rule

{P}c{Q}
{P ∗ R}c{Q ∗ R}

If R is true and non-overlapping

Then R remains true and non-overlapping
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Revisiting our footgun

We have: P = ℓ 7→ 1 and Q = ℓ 7→ 0
We pick: R = ℓ 7→ 1

�

ℓ 7→ 1
	

ℓ := 0
�

ℓ 7→ 0
	

{P}c{Q}
{P ∗ R}c{Q ∗ R}

Garbage in; garbage out
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From Points-to to Ownership

ℓ 7→ v

Meaning:
▶ used to be “ℓ points to v”
▶ now is “I own ℓ and it points to v”

Ownership:
▶ is globally unique
▶ is transferrable
▶ allows destructive updates

All of this is implicitly enforced by the rules of the logic
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Meaning:
▶ used to be “ℓ points to v”
▶ now is “I own ℓ and it points to v”

Ownership:
▶ is globally unique
▶ is transferrable
▶ allows destructive updates

Somewhat paradoxically, this allows local reasoning

All of this is implicitly enforced by the rules of the logic
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Old School Verification: Write, Test, Fix loop

10 WRITE CODE
20 DO FORMALISATION
30 I F ( CONTAINS BUG) THEN
40 GOTO 10
50 END I F
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Correct by Construction: Specify, Implement Correctly, Keep

Sometimes known as goal-driven development

1. Write a specification
2. In a dialogue with the compiler interactively refine it

✱ Each step produces part of the program
✱ Some step introduce some further goals too

3. Keep refining until all goals are trivials
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In This Talk: Idris 2

▶ Functional (lambdas, pure functions, inductive types)

swap : (a, b) -> (b, a)
swap = \ (x, y) => (y, x)

▶ First class types (i.e. types are standard values)
▶ Resource-aware (separation of specification vs. runtime)
▶ Strict (with explicit Laziness annotations)
▶ Compiled to ChezScheme (great target for a functional language)
▶ Self-hosted (reasonably fast!)
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▶ Functional (lambdas, pure functions, inductive types)
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▶ Resource-aware (separation of specification vs. runtime)

id : {0 a : Type} -> a -> a
id x = x

▶ Strict (with explicit Laziness annotations)
▶ Compiled to ChezScheme (great target for a functional language)
▶ Self-hosted (reasonably fast!)

Quantity 0: erased during compilation
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In This Talk: Core Idea

Define a Domain Specific Language internalising Separation logic ideas

▶ Linearity (ab)used to ensure global uniqueness
▶ Ownership proofs instead of raw pointers
▶ Erasure to get rid of specification data (values showing up in Ps, Qs, Rs)
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Ownership Type

region[start, end] 7→ vs

data Owned :
(region : Region) -> (start, end : Nat) ->
(vs : List Bits8) -> Type where
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Read

�

region[start, end] 7→ vs

∗ 0 ≤ idx < |vs|

�

v = getBits8(idx);

�

region[start, end] 7→ vs
∗ v = vs[idx]

�

getBits8 :
LinearIO io =>
{start, end : Nat} ->
(1 _ : Owned region start end vs) ->
(idx : Nat) -> (0 _ : InBounds idx vs) ->
L1 io (WithVal (Owned region start end vs)

(Singleton (index idx vs)))
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Write

�

region[start, end] 7→ vs

∗ 0 ≤ idx < |vs|

�

setBits8(idx, val);

¦

region[start, end] 7→ vs[idx := val]

©

setBits8 :
LinearIO io =>
{start : Nat} ->
(1 _ : Owned region start end vs) ->
(idx : Nat) -> (0 _ : InBounds idx vs) ->
(val : Bits8) ->
L1 io (Owned region start end (replaceAt idx val vs))
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Split

�

region[start, end] 7→ vs++ws

∗ |vs| =m

�

splitAt(m);

�

region[start, start+m] 7→ vs
∗ region[start+m, end] 7→ ws

�

splitAt :
{0 vs, ws : List Bits8} ->
{m : Nat} -> (0 _ : HasLength m vs) ->
Owned region start end (vs ++ ws) -@
LPair (Owned region start (start + m) vs)

(Owned region (start + m) end ws)
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Combine

�

region[start,middle] 7→ vs
∗ region[middle, end] 7→ ws

�

combine();

¦

region[start, end] 7→ vs++ws

©

(++) :
Owned region start middle vs -@
Owned region middle end ws -@
Owned region start end (vs ++ ws)
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Map Type

Map : (Type -> Type) -> Type
Map io =
forall region. {start, end : Nat} ->
{0 trees : List Bits8} ->
(saw : Bits8 -> Bits8) ->
(1 _ : Owned region start end trees) ->
L1 io (Owned region start end (map saw trees))
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Sequential Map - Loop Type

(1 _ : Owned region start end ((map saw treesL) <>> treesR)) ->
L1 io (Owned region start end (map saw (treesL <>> treesR)))
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Parallel Map

halve :
{start, end : Nat} ->
(1 _ : Owned region start end trees) ->
Res Nat (\ m =>
LPair (Owned region start (start + m) (take m trees))

(Owned region (start + m) end (drop m trees)))

par1 : L1 IO a -@ L1 IO b -@ L1 IO (LPair a b)

parMapRec : Map IO -> Map IO
parMapRec subMap saw buf

= do let (m # lbuf # rbuf) = halve buf
(lbuf # rbuf) <- par1 (subMap saw lbuf) (subMap saw rbuf)
let 1 buf = lbuf ++ rbuf
pure1 (reindex (mapTakeDrop saw m trees) buf)
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Parallel Reduce

Apply the same principles to get a parallel reduce
Relying on monoid laws to prove correctness
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What’s next?

Separation logic has a lot more to offer!
▶ Partial ownership (shared reads, owned writes)
▶ Locks (non-deterministic access to shared resources)
▶ Ghost states (stateful specification data)

Use these building blocks!
▶ Richly typed parallel skeletons
▶ Reintroduce layers of abstractions (e.g. inductive types)
▶ Seamless programming over serialised data
▶ Concurrent programs
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Happy to Chat! See You in Glasgow?

https://gallais.github.io
https://mamot.fr/@gallais

TYPES 2025 — 9–13 June
Glasgow, Scotland
https://msp.cis.strath.ac.uk/types2025/

Motivation Hoare Logic Separation Logic Correct by Construction # 36

https://gallais.github.io
https://mamot.fr/@gallais
https://msp.cis.strath.ac.uk/types2025/

	Motivation: Correct Concurrent Programs
	Hoare Logic for Correct Imperative Programs
	Separation Logic for Correct Concurrent Programs
	Correct by Construction Concurrent Programs

