
Correct by Construction Concurrent Programs
in Idris 2

Guillaume Allais

University of Strathclyde
Glasgow, UK

March 14th 2025

BOB2025

Motivation Hoare Logic Separation Logic Correct by Construction # 1

Table of Contents

Motivation: Correct Concurrent Programs

Hoare Logic for Correct Imperative Programs

Separation Logic for Correct Concurrent Programs

Correct by Construction Concurrent Programs

Motivation Hoare Logic Separation Logic Correct by Construction # 2

About Me

Lecturer at the University of Strathclyde (Glasgow, Scotland)

Interested in:
▶ Generic Programming and Proving
▶ Meta Programming and Proof Search
▶ Type-Directed Partial Evaluation
▶ Implementations of Type Theory
▶ Interactive Developer Tooling

Overarching Theme: Correctness by Construction

Motivation Hoare Logic Separation Logic Correct by Construction # 3

Table of Contents

Motivation: Correct Concurrent Programs

Hoare Logic for Correct Imperative Programs

Separation Logic for Correct Concurrent Programs

Correct by Construction Concurrent Programs

Motivation Hoare Logic Separation Logic Correct by Construction # 4

Sequential work

One worker mapping the transformation on an array.

Can we maybe share the load?

Motivation Hoare Logic Separation Logic Correct by Construction # 5

Sequential work

One worker mapping the transformation on an array.

Can we maybe share the load?

Motivation Hoare Logic Separation Logic Correct by Construction # 5

Sequential work

One worker mapping the transformation on an array.

Can we maybe share the load?

Motivation Hoare Logic Separation Logic Correct by Construction # 5

Sequential work

One worker mapping the transformation on an array.

Can we maybe share the load?

Motivation Hoare Logic Separation Logic Correct by Construction # 5

Sequential work

One worker mapping the transformation on an array.

Can we maybe share the load?

Motivation Hoare Logic Separation Logic Correct by Construction # 5

Sequential work

One worker mapping the transformation on an array.

Can we maybe share the load?

Motivation Hoare Logic Separation Logic Correct by Construction # 5

Sequential work

One worker mapping the transformation on an array.

Can we maybe share the load?

Motivation Hoare Logic Separation Logic Correct by Construction # 5

Sequential work

One worker mapping the transformation on an array.

Can we maybe share the load?

Motivation Hoare Logic Separation Logic Correct by Construction # 5

Sequential work

One worker mapping the transformation on an array.

Can we maybe share the load?

Motivation Hoare Logic Separation Logic Correct by Construction # 5

Sequential work

One worker mapping the transformation on an array.

Can we maybe share the load?

Motivation Hoare Logic Separation Logic Correct by Construction # 5

Sequential work

One worker mapping the transformation on an array.

Can we maybe share the load?

Motivation Hoare Logic Separation Logic Correct by Construction # 5

Concurrent work

Three workers mapping the transformation on a shared array.

Faster... but wronger!

Motivation Hoare Logic Separation Logic Correct by Construction # 6

Concurrent work

Three workers mapping the transformation on a shared array.

Faster... but wronger!

Motivation Hoare Logic Separation Logic Correct by Construction # 6

Concurrent work

Three workers mapping the transformation on a shared array.

Faster... but wronger!

Motivation Hoare Logic Separation Logic Correct by Construction # 6

Concurrent work

Three workers mapping the transformation on a shared array.

Faster... but wronger!

Motivation Hoare Logic Separation Logic Correct by Construction # 6

Concurrent work

Three workers mapping the transformation on a shared array.

Faster... but wronger!

Motivation Hoare Logic Separation Logic Correct by Construction # 6

Concurrent work

Three workers mapping the transformation on a shared array.

Faster... but wronger!

Motivation Hoare Logic Separation Logic Correct by Construction # 6

Concurrent work

Three workers mapping the transformation on a shared array.

Faster... but wronger!

Motivation Hoare Logic Separation Logic Correct by Construction # 6

Concurrent work

Three workers mapping the transformation on a shared array.

Faster... but wronger!

Motivation Hoare Logic Separation Logic Correct by Construction # 6

Table of Contents

Motivation: Correct Concurrent Programs

Hoare Logic for Correct Imperative Programs

Separation Logic for Correct Concurrent Programs

Correct by Construction Concurrent Programs

Motivation Hoare Logic Separation Logic Correct by Construction # 7

Hoare logic

A logic for imperative programs.
A memory model.
Statements of the form

{P}c{Q}

Motivation Hoare Logic Separation Logic Correct by Construction # 8

Hoare logic

A logic for imperative programs.
A memory model.
Statements of the form

{P}c{Q}

Assuming that initially P holds

Motivation Hoare Logic Separation Logic Correct by Construction # 8

Hoare logic

A logic for imperative programs.
A memory model.
Statements of the form

{P}c{Q}

Assuming that initially P holds

After executing the command c

Motivation Hoare Logic Separation Logic Correct by Construction # 8

Hoare logic

A logic for imperative programs.
A memory model.
Statements of the form

{P}c{Q}

Assuming that initially P holds

After executing the command c

We can guarantee that Q will hold

Motivation Hoare Logic Separation Logic Correct by Construction # 8

Assignment Axiom

{ℓ 7→ _} ℓ := 0 {ℓ 7→ 0}

Motivation Hoare Logic Separation Logic Correct by Construction # 9

Assignment Axiom

{ℓ 7→ _} ℓ := 0 {ℓ 7→ 0}

Assuming that ℓ is a valid location

Motivation Hoare Logic Separation Logic Correct by Construction # 9

Assignment Axiom

{ℓ 7→ _} ℓ := 0 {ℓ 7→ 0}

Assuming that ℓ is a valid location

Assigning 0 to ℓ

Motivation Hoare Logic Separation Logic Correct by Construction # 9

Assignment Axiom

{ℓ 7→ _} ℓ := 0 {ℓ 7→ 0}

Assuming that ℓ is a valid location

Assigning 0 to ℓ

Ensures that ℓ points to 0

Motivation Hoare Logic Separation Logic Correct by Construction # 9

Sequential Execution Axiom

{P}c1{Q} {Q}c2{R}
{P}c1; c2{R}

Motivation Hoare Logic Separation Logic Correct by Construction # 10

Sequential Execution Axiom

{P}c1{Q} {Q}c2{R}
{P}c1; c2{R}

If c1 takes us from P to Q

Motivation Hoare Logic Separation Logic Correct by Construction # 10

Sequential Execution Axiom

{P}c1{Q} {Q}c2{R}
{P}c1; c2{R}

If c1 takes us from P to Q

And c2 takes us from Q to R

Motivation Hoare Logic Separation Logic Correct by Construction # 10

Sequential Execution Axiom

{P}c1{Q} {Q}c2{R}
{P}c1; c2{R}

If c1 takes us from P to Q

And c2 takes us from Q to R

Then the composition c1; c2 takes us from P to R

Motivation Hoare Logic Separation Logic Correct by Construction # 10

A proof: swap with no allocation

{ℓ1 7→ a∧ ℓ2 7→ b}

ℓ1 := xor(ℓ1, ℓ2);

{ℓ1 7→ xor(a,b)∧ ℓ2 7→ b}

ℓ2 := xor(ℓ1, ℓ2);

{ℓ1 7→ xor(a,b)∧ ℓ2 7→ a}

ℓ1 := xor(ℓ1, ℓ2);

{ℓ1 7→ b∧ ℓ2 7→ a}

Motivation Hoare Logic Separation Logic Correct by Construction # 11

A proof: swap with no allocation

{ℓ1 7→ a∧ ℓ2 7→ b}
ℓ1 := xor(ℓ1, ℓ2);

{ℓ1 7→ xor(a,b)∧ ℓ2 7→ b}

ℓ2 := xor(ℓ1, ℓ2);

{ℓ1 7→ xor(a,b)∧ ℓ2 7→ a}

ℓ1 := xor(ℓ1, ℓ2);

{ℓ1 7→ b∧ ℓ2 7→ a}

Motivation Hoare Logic Separation Logic Correct by Construction # 11

A proof: swap with no allocation

{ℓ1 7→ a∧ ℓ2 7→ b}
ℓ1 := xor(ℓ1, ℓ2);

{ℓ1 7→ xor(a,b)∧ ℓ2 7→ b}
ℓ2 := xor(ℓ1, ℓ2);

{ℓ1 7→ xor(a,b)∧ ℓ2 7→ a}

ℓ1 := xor(ℓ1, ℓ2);

{ℓ1 7→ b∧ ℓ2 7→ a}

Motivation Hoare Logic Separation Logic Correct by Construction # 11

A proof: swap with no allocation

{ℓ1 7→ a∧ ℓ2 7→ b}
ℓ1 := xor(ℓ1, ℓ2);

{ℓ1 7→ xor(a,b)∧ ℓ2 7→ b}
ℓ2 := xor(ℓ1, ℓ2);

{ℓ1 7→ xor(a,b)∧ ℓ2 7→ xor(xor(a,b),b)}
ℓ1 := xor(ℓ1, ℓ2);

{ℓ1 7→ b∧ ℓ2 7→ a}

Motivation Hoare Logic Separation Logic Correct by Construction # 11

A proof: swap with no allocation

{ℓ1 7→ a∧ ℓ2 7→ b}
ℓ1 := xor(ℓ1, ℓ2);

{ℓ1 7→ xor(a,b)∧ ℓ2 7→ b}
ℓ2 := xor(ℓ1, ℓ2);

{ℓ1 7→ xor(a,b)∧ ℓ2 7→ xor(xor(a,b),b)}
ℓ1 := xor(ℓ1, ℓ2);

{ℓ1 7→ b∧ ℓ2 7→ a}

xor(xor(a,b),b) equals a

Motivation Hoare Logic Separation Logic Correct by Construction # 11

A proof: swap with no allocation

{ℓ1 7→ a∧ ℓ2 7→ b}
ℓ1 := xor(ℓ1, ℓ2);

{ℓ1 7→ xor(a,b)∧ ℓ2 7→ b}
ℓ2 := xor(ℓ1, ℓ2);

{ℓ1 7→ xor(a,b)∧ ℓ2 7→ a}
ℓ1 := xor(ℓ1, ℓ2);

{ℓ1 7→ b∧ ℓ2 7→ a}

Motivation Hoare Logic Separation Logic Correct by Construction # 11

A proof: swap with no allocation

{ℓ1 7→ a∧ ℓ2 7→ b}
ℓ1 := xor(ℓ1, ℓ2);

{ℓ1 7→ xor(a,b)∧ ℓ2 7→ b}
ℓ2 := xor(ℓ1, ℓ2);

{ℓ1 7→ xor(a,b)∧ ℓ2 7→ a}
ℓ1 := xor(ℓ1, ℓ2);

{ℓ1 7→ xor(xor(a,b),a)∧ ℓ2 7→ a}

Motivation Hoare Logic Separation Logic Correct by Construction # 11

A proof: swap with no allocation

{ℓ1 7→ a∧ ℓ2 7→ b}
ℓ1 := xor(ℓ1, ℓ2);

{ℓ1 7→ xor(a,b)∧ ℓ2 7→ b}
ℓ2 := xor(ℓ1, ℓ2);

{ℓ1 7→ xor(a,b)∧ ℓ2 7→ a}
ℓ1 := xor(ℓ1, ℓ2);

{ℓ1 7→ xor(xor(a,b),a)∧ ℓ2 7→ a}

xor(xor(a,b),a) equals b

Motivation Hoare Logic Separation Logic Correct by Construction # 11

A proof: swap with no allocation

{ℓ1 7→ a∧ ℓ2 7→ b}
ℓ1 := xor(ℓ1, ℓ2);

{ℓ1 7→ xor(a,b)∧ ℓ2 7→ b}
ℓ2 := xor(ℓ1, ℓ2);

{ℓ1 7→ xor(a,b)∧ ℓ2 7→ a}
ℓ1 := xor(ℓ1, ℓ2);

{ℓ1 7→ b∧ ℓ2 7→ a}

Motivation Hoare Logic Separation Logic Correct by Construction # 11

A proof: swap with no allocation

{ℓ1 7→ a∧ ℓ2 7→ b}
ℓ1 := xor(ℓ1, ℓ2);

{ℓ1 7→ xor(a,b)∧ ℓ2 7→ b}

ℓ2 := xor(ℓ1, ℓ2);

{ℓ1 7→ xor(a,b)∧ ℓ2 7→ a}

ℓ1 := xor(ℓ1, ℓ2);
{ℓ1 7→ b∧ ℓ2 7→ a}

Motivation Hoare Logic Separation Logic Correct by Construction # 11

Combining proofs

{P}c1{Q} {Q}c2{R}
{P}c1; c2{R}

The sequential composition rule is, ironically, anti-compositional: each subprogram
needs to talk about the entire world no matter what they actually use!

Motivation Hoare Logic Separation Logic Correct by Construction # 12

Combining proofs

{P}c1{Q} {Q}c2{R}
{P}c1; c2{R}

The sequential composition rule is, ironically, anti-compositional: each subprogram
needs to talk about the entire world no matter what they actually use!

Motivation Hoare Logic Separation Logic Correct by Construction # 12

Combining proofs

{P}c1{Q} {Q}c2{R}
{P}c1; c2{R}

The sequential composition rule is, ironically, anti-compositional: each subprogram
needs to talk about the entire world no matter what they actually use!

Motivation Hoare Logic Separation Logic Correct by Construction # 12

Combining proofs

{P}c1{Q} {Q}c2{R}
{P}c1; c2{R}

The sequential composition rule is, ironically, anti-compositional: each subprogram
needs to talk about the entire world no matter what they actually use!

Motivation Hoare Logic Separation Logic Correct by Construction # 12

What we want: lifting results

{P}c{Q}
{P∧ R}c{Q∧ R}

In a sense R is independent from P & Q

Motivation Hoare Logic Separation Logic Correct by Construction # 13

What we want: lifting results

{P}c{Q}
{P∧ R}c{Q∧ R}

If R is also true

In a sense R is independent from P & Q

Motivation Hoare Logic Separation Logic Correct by Construction # 13

What we want: lifting results

{P}c{Q}
{P∧ R}c{Q∧ R}

If R is also true

Then R remains true

In a sense R is independent from P & Q

Motivation Hoare Logic Separation Logic Correct by Construction # 13

What we want: lifting results

{P}c{Q}
{P∧ R}c{Q∧ R}

If R is also true

Then R remains true

In a sense R is independent from P & Q

Motivation Hoare Logic Separation Logic Correct by Construction # 13

What we get: nonsense!

We have: P = ℓ 7→ 1 and Q = ℓ 7→ 0
We pick: R = ℓ 7→ 1

�

ℓ 7→ 1
	

ℓ := 0
�

ℓ 7→ 0
	

{P}c{Q}
{P∧ R}c{Q∧ R}

Nothing actually enforces that R is independent from P & Q!

Motivation Hoare Logic Separation Logic Correct by Construction # 14

What we get: nonsense!

We have: P = ℓ 7→ 1 and Q = ℓ 7→ 0

We pick: R = ℓ 7→ 1

�

ℓ 7→ 1
∧

�

ℓ := 0
�

ℓ 7→ 0
∧

�

{P}c{Q}
{P∧ R}c{Q∧ R}

Nothing actually enforces that R is independent from P & Q!

Motivation Hoare Logic Separation Logic Correct by Construction # 14

What we get: nonsense!

We have: P = ℓ 7→ 1 and Q = ℓ 7→ 0
We pick: R = ℓ 7→ 1

�

ℓ 7→ 1
∧ ℓ 7→ 1

�

ℓ := 0
�

ℓ 7→ 0
∧ ℓ 7→ 1

�

{P}c{Q}
{P∧ R}c{Q∧ R}

Nothing actually enforces that R is independent from P & Q!

Motivation Hoare Logic Separation Logic Correct by Construction # 14

What we get: nonsense!

We have: P = ℓ 7→ 1 and Q = ℓ 7→ 0
We pick: R = ℓ 7→ 1

�

ℓ 7→ 1
∧ ℓ 7→ 1

�

ℓ := 0
�

ℓ 7→ 0
∧ ℓ 7→ 1

�

{P}c{Q}
{P∧ R}c{Q∧ R}

0 is equal to 1?!

Nothing actually enforces that R is independent from P & Q!

Motivation Hoare Logic Separation Logic Correct by Construction # 14

What we get: nonsense!

We have: P = ℓ 7→ 1 and Q = ℓ 7→ 0
We pick: R = ℓ 7→ 1

�

ℓ 7→ 1
∧ ℓ 7→ 1

�

ℓ := 0
�

ℓ 7→ 0
∧ ℓ 7→ 1

�

{P}c{Q}
{P∧ R}c{Q∧ R}

0 is equal to 1?!

Nothing actually enforces that R is independent from P & Q!

Motivation Hoare Logic Separation Logic Correct by Construction # 14

Table of Contents

Motivation: Correct Concurrent Programs

Hoare Logic for Correct Imperative Programs

Separation Logic for Correct Concurrent Programs

Correct by Construction Concurrent Programs

Motivation Hoare Logic Separation Logic Correct by Construction # 15

What we build: a separating conjunction

▶ Make predicates support-aware
▶ Disallow claims over overlapping memory regions

Predicate Support

Purely logical m+ n = 3

Points to ℓ 7→ v

Conjunction P ∗ Q ?

Motivation Hoare Logic Separation Logic Correct by Construction # 16

What we build: a separating conjunction

▶ Make predicates support-aware
▶ Disallow claims over overlapping memory regions

Predicate Support

Purely logical m+ n = 3

Points to ℓ 7→ v

Conjunction P ∗ Q ?

Motivation Hoare Logic Separation Logic Correct by Construction # 16

What we build: a separating conjunction

▶ Make predicates support-aware
▶ Disallow claims over overlapping memory regions

Predicate Support

Purely logical m+ n = 3

Points to ℓ 7→ v

Conjunction P ∗ Q ?

Motivation Hoare Logic Separation Logic Correct by Construction # 16

What we build: a separating conjunction

▶ Make predicates support-aware
▶ Disallow claims over overlapping memory regions

Predicate Support

Purely logical m+ n = 3

Points to ℓ 7→ v

Conjunction P ∗ Q ?

Motivation Hoare Logic Separation Logic Correct by Construction # 16

What we build: a separating conjunction

▶ Non-overlapping:

∗ =

▶ Overlapping

∗ =

Motivation Hoare Logic Separation Logic Correct by Construction # 17

What we build: a separating conjunction

▶ Non-overlapping:

∗ =

▶ Overlapping

∗ =

If this is P’s support

Motivation Hoare Logic Separation Logic Correct by Construction # 17

What we build: a separating conjunction

▶ Non-overlapping:

∗ =

▶ Overlapping

∗ =

If this is P’s support
and this Q’s support

Motivation Hoare Logic Separation Logic Correct by Construction # 17

What we build: a separating conjunction

▶ Non-overlapping:

∗ =

▶ Overlapping

∗ =

If this is P’s support
and this Q’s support

Then P ∗ Q is defined as P∧ Q and has this support

Motivation Hoare Logic Separation Logic Correct by Construction # 17

What we build: a separating conjunction

▶ Non-overlapping:

∗ =

▶ Overlapping

∗ =

Motivation Hoare Logic Separation Logic Correct by Construction # 17

What we build: a separating conjunction

▶ Non-overlapping:

∗ =

▶ Overlapping

∗ =

If this is P’s support

Motivation Hoare Logic Separation Logic Correct by Construction # 17

What we build: a separating conjunction

▶ Non-overlapping:

∗ =

▶ Overlapping

∗ =

If this is P’s support
and this Q’s support

Motivation Hoare Logic Separation Logic Correct by Construction # 17

What we build: a separating conjunction

▶ Non-overlapping:

∗ =

▶ Overlapping

∗ =

If this is P’s support
and this Q’s support

Then this is not a valid support.

P ∗ Q collapses to the absurd predicate ⊥

Motivation Hoare Logic Separation Logic Correct by Construction # 17

What we obtain: the frame rule

{P}c{Q}
{P ∗ R}c{Q ∗ R}

Motivation Hoare Logic Separation Logic Correct by Construction # 18

What we obtain: the frame rule

{P}c{Q}
{P ∗ R}c{Q ∗ R}

If R is true and non-overlapping

Motivation Hoare Logic Separation Logic Correct by Construction # 18

What we obtain: the frame rule

{P}c{Q}
{P ∗ R}c{Q ∗ R}

If R is true and non-overlapping

Then R remains true and non-overlapping

Motivation Hoare Logic Separation Logic Correct by Construction # 18

Revisiting our footgun

We have: P = ℓ 7→ 1 and Q = ℓ 7→ 0
We pick: R = ℓ 7→ 1

�

ℓ 7→ 1
	

ℓ := 0
�

ℓ 7→ 0
	

{P}c{Q}
{P ∗ R}c{Q ∗ R}

Garbage in; garbage out

Motivation Hoare Logic Separation Logic Correct by Construction # 19

Revisiting our footgun

We have: P = ℓ 7→ 1 and Q = ℓ 7→ 0

We pick: R = ℓ 7→ 1

�

ℓ 7→ 1
∗

�

ℓ := 0
�

ℓ 7→ 0
∗

�

{P}c{Q}
{P ∗ R}c{Q ∗ R}

Garbage in; garbage out

Motivation Hoare Logic Separation Logic Correct by Construction # 19

Revisiting our footgun

We have: P = ℓ 7→ 1 and Q = ℓ 7→ 0
We pick: R = ℓ 7→ 1

�

ℓ 7→ 1
∗ ℓ 7→ 1

�

ℓ := 0
�

ℓ 7→ 0
∗ ℓ 7→ 1

�

{P}c{Q}
{P ∗ R}c{Q ∗ R}

Garbage in; garbage out

Motivation Hoare Logic Separation Logic Correct by Construction # 19

Revisiting our footgun

We have: P = ℓ 7→ 1 and Q = ℓ 7→ 0
We pick: R = ℓ 7→ 1

�

ℓ 7→ 1
∗ ℓ 7→ 1

�

ℓ := 0
�

ℓ 7→ 0
∗ ℓ 7→ 1

�

{P}c{Q}
{P ∗ R}c{Q ∗ R}

Overlapping! P ∗ R and Q ∗ R both equal ⊥

Garbage in; garbage out

Motivation Hoare Logic Separation Logic Correct by Construction # 19

Revisiting our footgun

We have: P = ℓ 7→ 1 and Q = ℓ 7→ 0
We pick: R = ℓ 7→ 1

{⊥} ℓ := 0 {⊥}

{P}c{Q}
{P ∗ R}c{Q ∗ R}

Garbage in; garbage out

Motivation Hoare Logic Separation Logic Correct by Construction # 19

Revisiting our footgun

We have: P = ℓ 7→ 1 and Q = ℓ 7→ 0
We pick: R = ℓ 7→ 1

{⊥} ℓ := 0 {⊥}

{P}c{Q}
{P ∗ R}c{Q ∗ R}

Garbage in; garbage out

Motivation Hoare Logic Separation Logic Correct by Construction # 19

From Points-to to Ownership

ℓ 7→ v

Meaning:
▶ used to be “ℓ points to v”
▶ now is “I own ℓ and it points to v”

Ownership:
▶ is globally unique
▶ is transferrable
▶ allows destructive updates

All of this is implicitly enforced by the rules of the logic

Motivation Hoare Logic Separation Logic Correct by Construction # 20

From Points-to to Ownership

ℓ 7→ v

Meaning:
▶ used to be “ℓ points to v”
▶ now is “I own ℓ and it points to v”

Ownership:
▶ is globally unique
▶ is transferrable
▶ allows destructive updates

All of this is implicitly enforced by the rules of the logic

Motivation Hoare Logic Separation Logic Correct by Construction # 20

From Points-to to Ownership

ℓ 7→ v

Meaning:
▶ used to be “ℓ points to v”
▶ now is “I own ℓ and it points to v”

Ownership:
▶ is globally unique
▶ is transferrable
▶ allows destructive updates

Somewhat paradoxically, this allows local reasoning

All of this is implicitly enforced by the rules of the logic

Motivation Hoare Logic Separation Logic Correct by Construction # 20

From Points-to to Ownership

ℓ 7→ v

Meaning:
▶ used to be “ℓ points to v”
▶ now is “I own ℓ and it points to v”

Ownership:
▶ is globally unique
▶ is transferrable
▶ allows destructive updates

All of this is implicitly enforced by the rules of the logic

Motivation Hoare Logic Separation Logic Correct by Construction # 20

Table of Contents

Motivation: Correct Concurrent Programs

Hoare Logic for Correct Imperative Programs

Separation Logic for Correct Concurrent Programs

Correct by Construction Concurrent Programs

Motivation Hoare Logic Separation Logic Correct by Construction # 21

Old School Verification: Write, Test, Fix loop

10 WRITE CODE
20 DO FORMALISATION
30 I F (CONTAINS BUG) THEN
40 GOTO 10
50 END I F

Motivation Hoare Logic Separation Logic Correct by Construction # 22

Correct by Construction: Specify, Implement Correctly, Keep

Sometimes known as goal-driven development

1. Write a specification
2. In a dialogue with the compiler interactively refine it

✱ Each step produces part of the program
✱ Some step introduce some further goals too

3. Keep refining until all goals are trivials

Motivation Hoare Logic Separation Logic Correct by Construction # 23

In This Talk: Idris 2

▶ Functional (lambdas, pure functions, inductive types)

swap : (a, b) -> (b, a)
swap = \ (x, y) => (y, x)

▶ First class types (i.e. types are standard values)
▶ Resource-aware (separation of specification vs. runtime)
▶ Strict (with explicit Laziness annotations)
▶ Compiled to ChezScheme (great target for a functional language)
▶ Self-hosted (reasonably fast!)

Motivation Hoare Logic Separation Logic Correct by Construction # 24

In This Talk: Idris 2

▶ Functional (lambdas, pure functions, inductive types)
▶ First class types (i.e. types are standard values)

FileLoc : Type
FileLoc = (String, Nat, Nat)

▶ Resource-aware (separation of specification vs. runtime)
▶ Strict (with explicit Laziness annotations)
▶ Compiled to ChezScheme (great target for a functional language)
▶ Self-hosted (reasonably fast!)

Motivation Hoare Logic Separation Logic Correct by Construction # 24

In This Talk: Idris 2

▶ Functional (lambdas, pure functions, inductive types)
▶ First class types (i.e. types are standard values)
▶ Resource-aware (separation of specification vs. runtime)

id : {0 a : Type} -> a -> a
id x = x

▶ Strict (with explicit Laziness annotations)
▶ Compiled to ChezScheme (great target for a functional language)
▶ Self-hosted (reasonably fast!)

Motivation Hoare Logic Separation Logic Correct by Construction # 24

In This Talk: Idris 2

▶ Functional (lambdas, pure functions, inductive types)
▶ First class types (i.e. types are standard values)
▶ Resource-aware (separation of specification vs. runtime)

id : {0 a : Type} -> a -> a
id x = x

▶ Strict (with explicit Laziness annotations)
▶ Compiled to ChezScheme (great target for a functional language)
▶ Self-hosted (reasonably fast!)

Quantity 0: erased during compilation

Motivation Hoare Logic Separation Logic Correct by Construction # 24

In This Talk: Idris 2

▶ Functional (lambdas, pure functions, inductive types)
▶ First class types (i.e. types are standard values)
▶ Resource-aware (separation of specification vs. runtime)
▶ Strict (with explicit Laziness annotations)

▶ Compiled to ChezScheme (great target for a functional language)
▶ Self-hosted (reasonably fast!)

Motivation Hoare Logic Separation Logic Correct by Construction # 24

In This Talk: Idris 2

▶ Functional (lambdas, pure functions, inductive types)
▶ First class types (i.e. types are standard values)
▶ Resource-aware (separation of specification vs. runtime)
▶ Strict (with explicit Laziness annotations)
▶ Compiled to ChezScheme (great target for a functional language)

▶ Self-hosted (reasonably fast!)

Motivation Hoare Logic Separation Logic Correct by Construction # 24

In This Talk: Idris 2

▶ Functional (lambdas, pure functions, inductive types)
▶ First class types (i.e. types are standard values)
▶ Resource-aware (separation of specification vs. runtime)
▶ Strict (with explicit Laziness annotations)
▶ Compiled to ChezScheme (great target for a functional language)
▶ Self-hosted (reasonably fast!)

Motivation Hoare Logic Separation Logic Correct by Construction # 24

In This Talk: Core Idea

Define a Domain Specific Language internalising Separation logic ideas

▶ Linearity (ab)used to ensure global uniqueness
▶ Ownership proofs instead of raw pointers
▶ Erasure to get rid of specification data (values showing up in Ps, Qs, Rs)

Motivation Hoare Logic Separation Logic Correct by Construction # 25

In This Talk: Core Idea

Define a Domain Specific Language internalising Separation logic ideas

▶ Linearity (ab)used to ensure global uniqueness

▶ Ownership proofs instead of raw pointers
▶ Erasure to get rid of specification data (values showing up in Ps, Qs, Rs)

Motivation Hoare Logic Separation Logic Correct by Construction # 25

In This Talk: Core Idea

Define a Domain Specific Language internalising Separation logic ideas

▶ Linearity (ab)used to ensure global uniqueness
▶ Ownership proofs instead of raw pointers

▶ Erasure to get rid of specification data (values showing up in Ps, Qs, Rs)

Motivation Hoare Logic Separation Logic Correct by Construction # 25

In This Talk: Core Idea

Define a Domain Specific Language internalising Separation logic ideas

▶ Linearity (ab)used to ensure global uniqueness
▶ Ownership proofs instead of raw pointers
▶ Erasure to get rid of specification data (values showing up in Ps, Qs, Rs)

Motivation Hoare Logic Separation Logic Correct by Construction # 25

Ownership Type

region[start, end] 7→ vs

data Owned :
(region : Region) -> (start, end : Nat) ->
(vs : List Bits8) -> Type where

Motivation Hoare Logic Separation Logic Correct by Construction # 26

Read

�

region[start, end] 7→ vs

∗ 0 ≤ idx < |vs|

�

v = getBits8(idx);

�

region[start, end] 7→ vs
∗ v = vs[idx]

�

getBits8 :
LinearIO io =>
{start, end : Nat} ->
(1 _ : Owned region start end vs) ->
(idx : Nat) -> (0 _ : InBounds idx vs) ->
L1 io (WithVal (Owned region start end vs)

(Singleton (index idx vs)))

Motivation Hoare Logic Separation Logic Correct by Construction # 27

Read

�

region[start, end] 7→ vs

∗ 0 ≤ idx < |vs|

�

v = getBits8(idx);

�

region[start, end] 7→ vs
∗ v = vs[idx]

�

getBits8 :
LinearIO io =>
{start, end : Nat} ->
(1 _ : Owned region start end vs) ->
(idx : Nat) -> (0 _ : InBounds idx vs) ->
L1 io (WithVal (Owned region start end vs)

(Singleton (index idx vs)))

Motivation Hoare Logic Separation Logic Correct by Construction # 27

Read

�

region[start, end] 7→ vs
∗ 0 ≤ idx < |vs|

�

v = getBits8(idx);

�

region[start, end] 7→ vs
∗ v = vs[idx]

�

getBits8 :
LinearIO io =>
{start, end : Nat} ->
(1 _ : Owned region start end vs) ->
(idx : Nat) -> (0 _ : InBounds idx vs) ->
L1 io (WithVal (Owned region start end vs)

(Singleton (index idx vs)))

Motivation Hoare Logic Separation Logic Correct by Construction # 27

Read

�

region[start, end] 7→ vs
∗ 0 ≤ idx < |vs|

�

v = getBits8(idx);

�

region[start, end] 7→ vs
∗ v = vs[idx]

�

getBits8 :
LinearIO io =>
{start, end : Nat} ->
(1 _ : Owned region start end vs) ->
(idx : Nat) -> (0 _ : InBounds idx vs) ->
L1 io (WithVal (Owned region start end vs)

(Singleton (index idx vs)))

Motivation Hoare Logic Separation Logic Correct by Construction # 27

Read

�

region[start, end] 7→ vs
∗ 0 ≤ idx < |vs|

�

v = getBits8(idx);

�

region[start, end] 7→ vs
∗ v = vs[idx]

�

getBits8 :
LinearIO io =>
{start, end : Nat} ->
(1 _ : Owned region start end vs) ->
(idx : Nat) -> (0 _ : InBounds idx vs) ->
L1 io (WithVal (Owned region start end vs)

(Singleton (index idx vs)))

Motivation Hoare Logic Separation Logic Correct by Construction # 27

Write

�

region[start, end] 7→ vs

∗ 0 ≤ idx < |vs|

�

setBits8(idx, val);

¦

region[start, end] 7→ vs[idx := val]

©

setBits8 :
LinearIO io =>
{start : Nat} ->
(1 _ : Owned region start end vs) ->
(idx : Nat) -> (0 _ : InBounds idx vs) ->
(val : Bits8) ->
L1 io (Owned region start end (replaceAt idx val vs))

Motivation Hoare Logic Separation Logic Correct by Construction # 28

Write

�

region[start, end] 7→ vs

∗ 0 ≤ idx < |vs|

�

setBits8(idx, val);

¦

region[start, end] 7→ vs[idx := val]

©

setBits8 :
LinearIO io =>
{start : Nat} ->
(1 _ : Owned region start end vs) ->
(idx : Nat) -> (0 _ : InBounds idx vs) ->
(val : Bits8) ->
L1 io (Owned region start end (replaceAt idx val vs))

Motivation Hoare Logic Separation Logic Correct by Construction # 28

Write

�

region[start, end] 7→ vs
∗ 0 ≤ idx < |vs|

�

setBits8(idx, val);

¦

region[start, end] 7→ vs[idx := val]

©

setBits8 :
LinearIO io =>
{start : Nat} ->
(1 _ : Owned region start end vs) ->
(idx : Nat) -> (0 _ : InBounds idx vs) ->
(val : Bits8) ->
L1 io (Owned region start end (replaceAt idx val vs))

Motivation Hoare Logic Separation Logic Correct by Construction # 28

Write

�

region[start, end] 7→ vs
∗ 0 ≤ idx < |vs|

�

setBits8(idx, val);

¦

region[start, end] 7→ vs[idx := val]
©

setBits8 :
LinearIO io =>
{start : Nat} ->
(1 _ : Owned region start end vs) ->
(idx : Nat) -> (0 _ : InBounds idx vs) ->
(val : Bits8) ->
L1 io (Owned region start end (replaceAt idx val vs))

Motivation Hoare Logic Separation Logic Correct by Construction # 28

Write

�

region[start, end] 7→ vs
∗ 0 ≤ idx < |vs|

�

setBits8(idx, val);

¦

region[start, end] 7→ vs[idx := val]
©

setBits8 :
LinearIO io =>
{start : Nat} ->
(1 _ : Owned region start end vs) ->
(idx : Nat) -> (0 _ : InBounds idx vs) ->
(val : Bits8) ->
L1 io (Owned region start end (replaceAt idx val vs))

Motivation Hoare Logic Separation Logic Correct by Construction # 28

Split

�

region[start, end] 7→ vs++ws

∗ |vs| =m

�

splitAt(m);

�

region[start, start+m] 7→ vs
∗ region[start+m, end] 7→ ws

�

splitAt :
{0 vs, ws : List Bits8} ->
{m : Nat} -> (0 _ : HasLength m vs) ->
Owned region start end (vs ++ ws) -@
LPair (Owned region start (start + m) vs)

(Owned region (start + m) end ws)

Motivation Hoare Logic Separation Logic Correct by Construction # 29

Split

�

region[start, end] 7→ vs++ws

∗ |vs| =m

�

splitAt(m);

�

region[start, start+m] 7→ vs
∗ region[start+m, end] 7→ ws

�

splitAt :
{0 vs, ws : List Bits8} ->
{m : Nat} -> (0 _ : HasLength m vs) ->
Owned region start end (vs ++ ws) -@
LPair (Owned region start (start + m) vs)

(Owned region (start + m) end ws)

Motivation Hoare Logic Separation Logic Correct by Construction # 29

Split

�

region[start, end] 7→ vs++ws
∗ |vs| =m

�

splitAt(m);

�

region[start, start+m] 7→ vs
∗ region[start+m, end] 7→ ws

�

splitAt :
{0 vs, ws : List Bits8} ->
{m : Nat} -> (0 _ : HasLength m vs) ->
Owned region start end (vs ++ ws) -@
LPair (Owned region start (start + m) vs)

(Owned region (start + m) end ws)

Motivation Hoare Logic Separation Logic Correct by Construction # 29

Split

�

region[start, end] 7→ vs++ws
∗ |vs| =m

�

splitAt(m);

�

region[start, start+m] 7→ vs
∗ region[start+m, end] 7→ ws

�

splitAt :
{0 vs, ws : List Bits8} ->
{m : Nat} -> (0 _ : HasLength m vs) ->
Owned region start end (vs ++ ws) -@
LPair (Owned region start (start + m) vs)

(Owned region (start + m) end ws)

Motivation Hoare Logic Separation Logic Correct by Construction # 29

Split

�

region[start, end] 7→ vs++ws
∗ |vs| =m

�

splitAt(m);

�

region[start, start+m] 7→ vs
∗ region[start+m, end] 7→ ws

�

splitAt :
{0 vs, ws : List Bits8} ->
{m : Nat} -> (0 _ : HasLength m vs) ->
Owned region start end (vs ++ ws) -@
LPair (Owned region start (start + m) vs)

(Owned region (start + m) end ws)

Motivation Hoare Logic Separation Logic Correct by Construction # 29

Combine

�

region[start,middle] 7→ vs
∗ region[middle, end] 7→ ws

�

combine();

¦

region[start, end] 7→ vs++ws

©

(++) :
Owned region start middle vs -@
Owned region middle end ws -@
Owned region start end (vs ++ ws)

Motivation Hoare Logic Separation Logic Correct by Construction # 30

Combine

�

region[start,middle] 7→ vs
∗ region[middle, end] 7→ ws

�

combine();

¦

region[start, end] 7→ vs++ws

©

(++) :
Owned region start middle vs -@
Owned region middle end ws -@
Owned region start end (vs ++ ws)

Motivation Hoare Logic Separation Logic Correct by Construction # 30

Combine

�

region[start,middle] 7→ vs
∗ region[middle, end] 7→ ws

�

combine();

¦

region[start, end] 7→ vs++ws
©

(++) :
Owned region start middle vs -@
Owned region middle end ws -@
Owned region start end (vs ++ ws)

Motivation Hoare Logic Separation Logic Correct by Construction # 30

Combine

�

region[start,middle] 7→ vs
∗ region[middle, end] 7→ ws

�

combine();

¦

region[start, end] 7→ vs++ws
©

(++) :
Owned region start middle vs -@
Owned region middle end ws -@
Owned region start end (vs ++ ws)

Motivation Hoare Logic Separation Logic Correct by Construction # 30

Map Type

Map : (Type -> Type) -> Type
Map io =
forall region. {start, end : Nat} ->
{0 trees : List Bits8} ->
(saw : Bits8 -> Bits8) ->
(1 _ : Owned region start end trees) ->
L1 io (Owned region start end (map saw trees))

Motivation Hoare Logic Separation Logic Correct by Construction # 31

Sequential Map - Loop Type

(1 _ : Owned region start end ((map saw treesL) <>> treesR)) ->
L1 io (Owned region start end (map saw (treesL <>> treesR)))

Motivation Hoare Logic Separation Logic Correct by Construction # 32

Sequential Map - Loop Type

(1 _ : Owned region start end ((map saw treesL) <>> treesR)) ->
L1 io (Owned region start end (map saw (treesL <>> treesR)))

Motivation Hoare Logic Separation Logic Correct by Construction # 32

Sequential Map - Loop Type

(1 _ : Owned region start end ((map saw treesL) <>> treesR)) ->
L1 io (Owned region start end (map saw (treesL <>> treesR)))

Motivation Hoare Logic Separation Logic Correct by Construction # 32

Sequential Map - Loop Type

(1 _ : Owned region start end ((map saw treesL) <>> treesR)) ->
L1 io (Owned region start end (map saw (treesL <>> treesR)))

Motivation Hoare Logic Separation Logic Correct by Construction # 32

Parallel Map

halve :
{start, end : Nat} ->
(1 _ : Owned region start end trees) ->
Res Nat (\ m =>
LPair (Owned region start (start + m) (take m trees))

(Owned region (start + m) end (drop m trees)))

par1 : L1 IO a -@ L1 IO b -@ L1 IO (LPair a b)

parMapRec : Map IO -> Map IO
parMapRec subMap saw buf

= do let (m # lbuf # rbuf) = halve buf
(lbuf # rbuf) <- par1 (subMap saw lbuf) (subMap saw rbuf)
let 1 buf = lbuf ++ rbuf
pure1 (reindex (mapTakeDrop saw m trees) buf)

Motivation Hoare Logic Separation Logic Correct by Construction # 33

Parallel Map

halve :
{start, end : Nat} ->
(1 _ : Owned region start end trees) ->
Res Nat (\ m =>
LPair (Owned region start (start + m) (take m trees))

(Owned region (start + m) end (drop m trees)))

par1 : L1 IO a -@ L1 IO b -@ L1 IO (LPair a b)

parMapRec : Map IO -> Map IO
parMapRec subMap saw buf

= do let (m # lbuf # rbuf) = halve buf
(lbuf # rbuf) <- par1 (subMap saw lbuf) (subMap saw rbuf)
let 1 buf = lbuf ++ rbuf
pure1 (reindex (mapTakeDrop saw m trees) buf)

Motivation Hoare Logic Separation Logic Correct by Construction # 33

Parallel Map

halve :
{start, end : Nat} ->
(1 _ : Owned region start end trees) ->
Res Nat (\ m =>
LPair (Owned region start (start + m) (take m trees))

(Owned region (start + m) end (drop m trees)))

par1 : L1 IO a -@ L1 IO b -@ L1 IO (LPair a b)

parMapRec : Map IO -> Map IO
parMapRec subMap saw buf

= do let (m # lbuf # rbuf) = halve buf
(lbuf # rbuf) <- par1 (subMap saw lbuf) (subMap saw rbuf)
let 1 buf = lbuf ++ rbuf
pure1 (reindex (mapTakeDrop saw m trees) buf)

Motivation Hoare Logic Separation Logic Correct by Construction # 33

Parallel Map

halve :
{start, end : Nat} ->
(1 _ : Owned region start end trees) ->
Res Nat (\ m =>
LPair (Owned region start (start + m) (take m trees))

(Owned region (start + m) end (drop m trees)))

par1 : L1 IO a -@ L1 IO b -@ L1 IO (LPair a b)

parMapRec : Map IO -> Map IO
parMapRec subMap saw buf

= do let (m # lbuf # rbuf) = halve buf
(lbuf # rbuf) <- par1 (subMap saw lbuf) (subMap saw rbuf)
let 1 buf = lbuf ++ rbuf
pure1 (reindex (mapTakeDrop saw m trees) buf)

Motivation Hoare Logic Separation Logic Correct by Construction # 33

Parallel Reduce

Apply the same principles to get a parallel reduce
Relying on monoid laws to prove correctness

Motivation Hoare Logic Separation Logic Correct by Construction # 34

What’s next?

Separation logic has a lot more to offer!
▶ Partial ownership (shared reads, owned writes)
▶ Locks (non-deterministic access to shared resources)
▶ Ghost states (stateful specification data)

Use these building blocks!
▶ Richly typed parallel skeletons
▶ Reintroduce layers of abstractions (e.g. inductive types)
▶ Seamless programming over serialised data
▶ Concurrent programs

Motivation Hoare Logic Separation Logic Correct by Construction # 35

Happy to Chat! See You in Glasgow?

https://gallais.github.io
https://mamot.fr/@gallais

TYPES 2025 — 9–13 June
Glasgow, Scotland
https://msp.cis.strath.ac.uk/types2025/

Motivation Hoare Logic Separation Logic Correct by Construction # 36

https://gallais.github.io
https://mamot.fr/@gallais
https://msp.cis.strath.ac.uk/types2025/

	Motivation: Correct Concurrent Programs
	Hoare Logic for Correct Imperative Programs
	Separation Logic for Correct Concurrent Programs
	Correct by Construction Concurrent Programs

