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Concurrent work

Three workers mapping the e transformation on a shared array.
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A logic for imperative programs.
A memory model.
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{P}c{Q}
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What we get: nonsense!
{P}c{Q}

We have: P=/—1andQ=/[—~o0 {P AR}c{Q AR}
We pick: R=1 — 1
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AL — 1 AL —\1
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Nothing actually enforces that R is independent from P & Q!

Hoare Logic
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What we build: a separating conjunction

> Make predicates support-aware
» Disallow claims over overlapping memory regions

Predicate Support

Separation Logic #16




What we build: a separating conjunction

> Make predicates support-aware
» Disallow claims over overlapping memory regions

‘ Predicate Support

Purely logical m+n=3

Separation Logic #16




What we build: a separating conjunction

> Make predicates support-aware
» Disallow claims over overlapping memory regions

Predicate Support

Purely logical m+n=3

Points to f—v [ |

Separation Logic #16
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> Make predicates support-aware
» Disallow claims over overlapping memory regions

Predicate Support

Purely logical m+n=3

Points to f—v [ |

Conjunction P x Q ?
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Revisiting our footgun
{P}c{Q}
{P * R}c{Q * R}

We have:P=[—1andQ=/~0
We pick: R =1 —1

{L} £:=0 {1}

(&) Garbage in; garbage out

Separation Logic




From Points-to to Ownership
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From Points-to to Ownership

{—v

Meaning:
> used to be “/ points to v”
» now is “l own / and it points to v”

Ownership:
» is globally unique
> is transferrable
> allows destructive updates

All of this is implicitly enforced by the rules of the logic

Separation Logic #20
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Old School Verification: Write, Test, Fix loop

10 WRITE CODE

20 DO FORMALISATION

30 IF (CONTAINS BUG) THEN
40 GOTO 10

50 END IF
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Correct by Construction: Specify, Inplement Correctly, Keep

Sometimes known as goal-driven development

1. Write a specification
2. In a dialogue with the compiler interactively refine it

* Each step produces part of the program
* Some step introduce some further goals too

3. Keep refining until all goals are trivials
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In This Talk: Idris 2

» Functional (lambdas, pure functions, inductive types)

swap : (a, b) —> (b, a)
swap = \ (x, y) => (y, x)
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» Functional (lambdas, pure functions, inductive types)

> First class types (i.e. types are standard values)

» Resource-aware (separation of specification vs. runtime)

» Strict (with explicit Laziness annotations)

» Compiled to ChezScheme (great target for a functional language)
» Self-hosted (reasonably fast!)

Correct by Construction #24
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In This Talk: Core Idea

Define a Domain Specific Language internalising Separation logic ideas

» Linearity (ab)used to ensure global uniqueness
» Ownership proofs instead of raw pointers
» Erasure to get rid of specification data (values showing up in Ps, Qs, Rs)
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Ownership Type

region[start, end] — vs

data Owned
(region : Region) —-> (start, end : Nat) ->
(vs : List Bits8) —-> Type where

Correct by Construction #26
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Read

region(start, end] — vs
* 0<idx < |vs|

v = getBitss8(idx);

region[start, end] — vs
x v =vs[idx]

getBits8
LinearIO io =>
{start, end : Nat} —>
(1 _ : Owned region start end vs) ->
(idx : Nat) -> (0 _ : InBounds idx vs) —>
Ll io (WithVal (Owned region start end vs)
(Singleton (index idx vs)))
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Write

region(start, end] — vs
* 0<idx<|vs|

setBits8(idx, val);

{ region[start, end] — vs[idx := val] }

setBits8
LinearIO io =>
{start : Nat} —>
(1 _ : Owned region start end vs) —>
(idx : Nat) -> (0 _ : InBounds idx vs) ->
(val : Bits8) —>
Ll io (Owned region start end (replaceAt idx wval vs))
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Split

region[start, end] — vs + ws
* |vs|=m

splitat(m);

region|start, start + m] — vs
x region[start + m, end] — ws

splitAt
{0 vs, ws : List Bits8} ->
{m : Nat} -> (0 _ : HasLength m vs) ->
Owned region start end (vs ++ ws) -Q@

LPair (Owned region start (start + m) vs)
(Owned region (start + m) end ws)
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Combine
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Combine

region[start, middle] — vs
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combine();
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Combine

region[start, middle] — vs
* region[middle, end] — ws

combine();

{ region[start, end] — vs + ws }

(++)
Owned region start middle vs -(@
Owned region middle end ws —(@
Owned region start end (vs ++ ws)
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Map Type

Map : (Type -> Type) —> Type
Map io =
forall region. {start, end : Nat} ->
{0 trees : List Bits8} ->
(saw : Bits8 -> Bits8) —>
(1 _ : Owned region start end trees) ->
Ll io (Owned region start end (map saw trees))

Correct by Construction #31




Sequential Map - Loop Type
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Sequential Map - Loop Type
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(1 _ : Owned region start end ((map saw treesL) <>> treesR)) —>
Ll io (Owned region start end (map saw (treesL <>> treesR)))
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Sequential Map - Loop Type
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(1 _ : Owned region start end ((map saw treesL) <>>(treesR)) -—>
Ll io (Owned region start end (map saw (treesL <>> tré&esK)))
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Parallel Map
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Parallel Map

halve
{start, end : Nat} -—>
(1 _ : Owned region start end trees) ->
Res Nat (\ m =>
LPair (Owned region start (start + m) (take m trees))

(Owned region (start + m) end (drop m trees)))
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Parallel Map

halve

{start, end

(1 _

Owned

Res Nat (\ m
LPair (Owned

parl

(Owned

L1 IO a

Nat} -—>

region start end trees) ->

=>

region start (start + m) (take m trees))
region (start + m) end (drop m trees)))

-@ L1 I0 b -@ L1 IO (LPair a b)

Correct by Construction
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Parallel Map

halve
{start, end : Nat} -—>
(1 _ : Owned region start end trees) ->
Res Nat (\ m =>
LPair (Owned region start (start + m) (take m trees))

(Owned region (start + m) end (drop m trees)))

parl : L1 IO a -@ L1 IO b -@ L1 IO (LPair a b)

parMapRec : Map IO -> Map IO
parMapRec subMap saw buf
= do let (m # lbuf # rbuf) = halve buf
(lbuf # rbuf) <- parl (subMap saw lbuf) (subMap saw rbuf)
let 1 buf = lbuf ++ rbuf
purel (reindex (mapTakeDrop saw m trees) buf)

Correct by Construction
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Parallel Reduce

Apply the same principles to get a parallel reduce
Relying on monoid laws to prove correctness
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What's next?

Separation logic has a lot more to offer!
» Partial ownership (shared reads, owned writes)
» Locks (non-deterministic access to shared resources)
» Ghost states (stateful specification data)

Use these building blocks!
> Richly typed parallel skeletons
» Reintroduce layers of abstractions (e.g. inductive types)
» Seamless programming over serialised data
» Concurrent programs

Correct by Construction

#35




Happy to Chat! See You in Glasgow?

@ https://gallais.github.io
@ https://mamot.fr/ @gallais

TYPES 2025 — 9-13 June
Glasgow, Scotland
https://msp.cis.strath.ac.uk/types2025/
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