Correct by Construction Concurrent Programs
in Idris 2

Guillaume Allais

University of Strathclyde
Glasgow, UK

March 14" 2025

BOB2025

Table of Contents

Motivation: Correct Concurrent Programs

Hoare Logic for Correct Imperative Programs

Separation Logic for Correct Concurrent Programs

Correct by Construction Concurrent Programs

About Me

Lecturer at the University of Strathclyde (Glasgow, Scotland)

Interested in:
» Generic Programming and Proving
» Meta Programming and Proof Search
» Type-Directed Partial Evaluation
» Implementations of Type Theory
> Interactive Developer Tooling

Overarching Theme: Correctness by Construction

Table of Contents

Motivation: Correct Concurrent Programs

Motivation #a4

Sequential work

One worker mapping the e transformation on an array.

Motivation

P92999999999999999¢

Sequential work

One worker mapping the e transformation on an array.

=)

PP9292999999999999¢9

Motivation #5

Sequential work

One worker mapping the e transformation on an array.

Motivation

=)

PEPPPPOPOOIOIOPIPOPOOIOYOPPY

Sequential work

One worker mapping the e transformation on an array.

Motivation

=)

PERPPPOPOOIOIOPIOPOOOYOPIPEY

Sequential work

One worker mapping the e transformation on an array.

Motivation

1)

PRRRPPOOOOIOPIOPOOOYOPIPEY®

Sequential work

One worker mapping the e transformation on an array.

Motivation

=)

PERRIPPOIOOOOPOPOOOYOPIOPY®

Sequential work

One worker mapping the e transformation on an array.

Motivation

=)

PERRENPOPOIOIOPOPOOOIOPIPY®

Sequential work

One worker mapping the e transformation on an array.

Motivation

129)

PERRERRNOPOPOIOPOPOOOIOPIOPY®

Sequential work

One worker mapping the e transformation on an array.

Motivation

1221

PRI RRNEPOPOPIOPOOOOPIPY®

Sequential work

One worker mapping the e transformation on an array.

Motivation

/5]

PEFRREREIPOPOIOOOPOOPSP

Sequential work

One worker mapping the e transformation on an array.

()

PEFRREREIROPOPIOOOPIOOPSP

&3 Can we maybe share the load?

Motivation

Concurrent work

Three workers mapping the e transformation on a shared array.

Motivation

P92999999999999999¢

Concurrent work

Three workers mapping the e transformation on a shared array.

Motivation

=)

=) =)

PPP9PPQPFPSPSPSPIOPRPSPISPESES

Concurrent work

Three workers mapping the e transformation on a shared array.

Motivation

=) =) =)

PPN BOIOYOOREBEOPOIOPY

Concurrent work

Three workers mapping the o transformation on a shared array.

Motivation

=)

=)

=)

KX XN

XX N

‘XX

Concurrent work

Three workers mapping the e transformation on a shared array.

1) =) =)

=

PEFROPORBEROOORENRSS

Motivation #6

Concurrent work

Three workers mapping the e transformation on a shared array.

=) 1) =)

= e s = = = B s = = = = =

PEFRROPRRREROPRERERRR®

Motivation #6

Concurrent work

Three workers mapping the e transformation on a shared array.

=) 1) 1)

- s = = e B e S s e e =S =

PERERRERREREEEEREEE

Motivation #6

Concurrent work

Three workers mapping the e transformation on a shared array.

. 2 . 2

45 k3

= e s = = = e s = = - s = =

— = ; P _
T T BEPER S BEBEEEE

£ Faster... but wronger!

Motivation #6

Table of Contents

Hoare Logic for Correct Imperative Programs

Hoare Logic #7

Hoare logic

A logic for imperative programs.
A memory model.
Statements of the form

{P}c{Q}

Hoare Logic

Hoare logic

A logic for imperative programs.
A memory model.
Statements of the form

{P}c{Q}

Hoare Logic

Hoare logic

A logic for imperative programs.
A memory model.
Statements of the form

{P}c{Q}

Hoare Logic

Hoare logic

A logic for imperative programs.
A memory model.
Statements of the form

{P}c{Q}

Hoare Logic

Assignment Axiom

{{—- _} [l:=0 {l—o0}

Assignment Axiom

{{—- _} [l:=0 {l—o0}

Assignment Axiom

0 {

{{—- _} [l:=0 {l—o0}

Assignment Axiom

0 {

{{—- _} [l:=0 {l—o0}

Sequential Execution Axiom

{Prc,{Q} {Q}c AR}

{P}c;c,{R}

Sequential Execution Axiom

c, Pto Q

{Prc,{Q} {Q}c AR}

{P}c;c,{R}

Sequential Execution Axiom
c, Pto Q

c, Q R

{Prc,{Q} {Q}c AR}

{P}c;c,{R}

Sequential Execution Axiom
c, Pto Q

c, Q R

{Prc,{Q} {Q}c AR}

{P}c;c,{R}

A proof: swap with no allocation

L =xor({,L,);

L, :=xor(L,L,);

L, :=xor(L,1,);

Hoare Logic 411

A proof: swap with no allocation

{{,—anl,—b}
L =xor({,L,);
L, :=xor(L,L,);

L, :=xor(L,1,);

Hoare Logic 411

A proof: swap with no allocation

{{,—anl,—b}

L =xor({,L,);
{{,— xor(a,b) AL, — b}

L, :=xor(L,L,);

L, :=xor(L,L,);

Hoare Logic 411

A proof: swap with no allocation

{{,—anl,—b}

L =xor({,L,);
{{,— xor(a,b) AL, — b}

L, :=xor(L,L,);
{Z, — xor(a, b) A L, — xor(xor(a, b), b)}

L, :=xor(L,L,);

Hoare Logic #1

A proof: swap with no allocation

{{,—anl,—b}

L =xor({,L,);
{{,— xor(a,b) AL, — b}

L, :=xor(L,L,);
{Z, — xor(a, b) A L, — xor(xor(a, b), b)}

L, :=xor(L,L,);

xor(xor(a, b), b) a

Hoare Logic #1

A proof: swap with no allocation

{{,—anl,—b}

L =xor({,L,);
{{,— xor(a,b) AL, — b}

L, :=xor(L,L,);
{L,— xor(a,b) AL, — a}

L, :=xor(L,L,);

Hoare Logic #11

A proof: swap with no allocation

{{,—anl,—b}

L =xor({,L,);
{{,— xor(a,b) AL, — b}

L, :=xor(L,L,);
{L,— xor(a,b) AL, — a}

L, :=xor(L,L,);
{L, — xor(xor(a,b),a) AL, — a}

Hoare Logic #1

A proof: swap with no allocation

{{,—anl,—b}

L =xor({,L,);
{{,— xor(a,b) AL, — b}

L, :=xor(L,L,);
{L,— xor(a,b) AL, — a}

L, :=xor(L,L,);
{L, — xor(xor(a,b),a) AL, — a}

xor(xor(a, b), a) b

Hoare Logic

A proof: swap with no allocation

{{,—anl,—b}

L =xor({,L,);
{{,— xor(a,b) AL, — b}

L, :=xor(L,L,);
{L,— xor(a,b) AL, — a}

L, :=xor(L,L,);
{{,—=bAl —a}

Hoare Logic #11

A proof: swap with no allocation
{{,—anl,—b}
L =xor({,L,);
L, :=xor(L,L,);

L, :=xor(L,1,);
{{,—=bAl, —a}

Hoare Logic 411

Combining proofs

{P}c,{Q} {Q}c,{R}
{P}c,;c,{R}

The sequential composition rule is, ironically, anti-compositional: each subprogram
needs to talk about the entire world no matter what they actually use!

Hoare Logic #12

Combining proofs

{PYc.{Q} {Q}c,{R}
{P}Yc,;c,{R}

The sequential composition rule is, ironically, anti-compositional: each subprogram
needs to talk about the entire world no matter what they actually use!

Hoare Logic #12

Combining proofs

{PYc.{Q} {Q}c,{R}
{P}Yc,;c,{R}

The sequential composition rule is, ironically, anti-compositional: each subprogram
needs to talk about the entire world no matter what they actually use!

Hoare Logic #12

Combining proofs

{PYc.{Q} {Q}c,{R}
{PYc,;c,{R}

The sequential composition rule is, ironically, anti-compositional: each subprogram
needs to talk about the entire world no matter what they actually use!

Hoare Logic #12

What we want: lifting results

{P}c{Q}

{P AR}c{Q A R}

What we want: lifting results

{P}c{Q}

{P AR}c{Q A R}

What we want: lifting results

{P}c{Q}

{P AR}c{Q A R}

What we want: lifting results

{P}c{Q}
{P AR}c{Q A R}

In a sense R is independent from P & Q

What we get: nonsense!
{P}c{Q}
{PAR}c{Q AR}

{f—1} 1:=0{l—0}

What we get: nonsense!
{P}c{Q}
We have: P=/—1andQ=/[—~o0 {P AR}c{Q AR}

(e

Hoare Logic #14

What we get: nonsense!
{P}c{Q}

We have: P=/—1andQ=/[—~o0 {P AR}c{Q AR}
We pick: R=1 — 1

f—1)| £:=0 {—0
AL — 1 AL — 1

Hoare Logic #14

What we get: nonsense!
{P}c{Q}

We have: P=/—1andQ=/[—~o0 {P AR}c{Q AR}
We pick: R=1 — 1

f—1)| £:=0 { —/0
AL — 1 AL —\1

o 1

Hoare Logic #14

What we get: nonsense!
{P}c{Q}

We have: P=/—1andQ=/[—~o0 {P AR}c{Q AR}
We pick: R=1 — 1

f—1)| £:=0 { —/0
AL — 1 AL —\1

(]

43 O 1

Nothing actually enforces that R is independent from P & Q!

Hoare Logic

Table of Contents

Separation Logic for Correct Concurrent Programs

Separation Logic #15

What we build: a separating conjunction

> Make predicates support-aware
» Disallow claims over overlapping memory regions

Predicate Support

Separation Logic #16

What we build: a separating conjunction

> Make predicates support-aware
» Disallow claims over overlapping memory regions

‘ Predicate Support

Purely logical m+n=3

Separation Logic #16

What we build: a separating conjunction

> Make predicates support-aware
» Disallow claims over overlapping memory regions

Predicate Support

Purely logical m+n=3

Points to f—v [|

Separation Logic #16

What we build: a separating conjunction

> Make predicates support-aware
» Disallow claims over overlapping memory regions

Predicate Support

Purely logical m+n=3

Points to f—v [|

Conjunction P x Q ?

Separation Logic #16

What we build: a separating conjunction

» Non-overlapping:

ek

Separation Logic #17

What we build: a separating conjunction

» Non-overlapping:

ek

Separation Logic #17

What we build: a separating conjunction

» Non-overlapping:

ek

Separation Logic #17

What we build: a separating conjunction

» Non-overlapping:

ek

PAQ

Separation Logic

What we build: a separating conjunction

» Non-overlapping:

ek

» Overlapping

| *

Separation Logic

What we build: a separating conjunction

» Non-overlapping:

ek

» Overlapping

| *

Separation Logic

What we build: a separating conjunction

» Non-overlapping:

ek

» Overlapping

| *

Separation Logic

What we build: a separating conjunction

» Non-overlapping:

ek

» Overlapping

| *

P x Q

Separation Logic

What we obtain: the frame rule

{P}c{Q}

{P * R}c{Q * R}

What we obtain: the frame rule

{P}c{Q}

{P * R}c{Q * R}

What we obtain: the frame rule

{P}c{Q}

{P * R}c{Q * R}

Revisiting our footgun
{P}c{Q}
{P * R}c{Q * R}

{f—1} 1:=0{L—0}

Revisiting our footgun
{P}c{Q}
{P * R}c{Q * R}

We have:P=/—1and Q=/—0

L))

Separation Logic #19

Revisiting our footgun
{P}c{Q}
{P * R}c{Q * R}

We have:P=/—1and Q=/—0
We pick: R=1 —1

f—1)| £:=0 {—0
*[.-;1 *[-—>1

Separation Logic #19

Revisiting our footgun
{P}c{Q}
{P * R}c{Q * R}

We have:P=/—1and Q=/—0
We pick: R=1 —1

f—1| £:=0 {\— 0
*[.-;1 *[-—>1
P % R Q *R 1

Separation Logic #19

Revisiting our footgun
{P}c{Q}
{P * R}c{Q * R}

We have:P=[—1andQ=/~0
We pick: R =1 —1

{L} £:=0 {1}

Separation Logic #19

Revisiting our footgun
{P}c{Q}
{P * R}c{Q * R}

We have:P=[—1andQ=/~0
We pick: R =1 —1

{L} £:=0 {1}

(&) Garbage in; garbage out

Separation Logic

From Points-to to Ownership

{—v

Meaning:
> used to be “/ points to v”

> now is “l own / and it points to v”

Separation Logic #20

From Points-to to Ownership

{—v

Meaning:
> used to be “/ points to v”
» now is “l own / and it points to v”

Ownership:
» is globally unique
> is transferrable

> allows destructive updates

Separation Logic #20

From Points-to to Ownership

{—v

Meaning:
> used to be “/ points to v”
» now is “l own / and it points to v”

Ownership:
» is globally unique
> is transferrable

> allows destructive updates

Separation Logic #20

From Points-to to Ownership

{—v

Meaning:
> used to be “/ points to v”
» now is “l own / and it points to v”

Ownership:
» is globally unique
> is transferrable
> allows destructive updates

All of this is implicitly enforced by the rules of the logic

Separation Logic #20

Table of Contents

Correct by Construction Concurrent Programs

Correct by Construction #21

Old School Verification: Write, Test, Fix loop

10 WRITE CODE

20 DO FORMALISATION

30 IF (CONTAINS BUG) THEN
40 GOTO 10

50 END IF

Correct by Construction #22

Correct by Construction: Specify, Inplement Correctly, Keep

Sometimes known as goal-driven development

1. Write a specification
2. In a dialogue with the compiler interactively refine it

* Each step produces part of the program
* Some step introduce some further goals too

3. Keep refining until all goals are trivials

Correct by Construction #23

In This Talk: Idris 2

» Functional (lambdas, pure functions, inductive types)

swap : (a, b) —> (b, a)
swap = \ (x, y) => (y, x)

Correct by Construction #24

In This Talk: Idris 2

» Functional (lambdas, pure functions, inductive types)
> First class types (i.e. types are standard values)

FileLoc : Type
Fileloc = (String, Nat, Nat)

Correct by Construction

In This Talk: Idris 2

» Functional (lambdas, pure functions, inductive types)
> First class types (i.e. types are standard values)
> Resource-aware (separation of specification vs. runtime)

id : {0 a : Type} -> a —> a
id x = x

Correct by Construction #24

In This Talk: Idris 2

» Functional (lambdas, pure functions, inductive types)
> First class types (i.e. types are standard values)
> Resource-aware (separation of specification vs. runtime)

id : {0 a : Type} -> a —> a
id x =%

Correct by Construction

In This Talk: Idris 2

» Functional (lambdas, pure functions, inductive types)

> First class types (i.e. types are standard values)
» Resource-aware (separation of specification vs. runtime)
» Strict (with explicit Laziness annotations)

Correct by Construction #24

In This Talk: Idris 2

» Functional (lambdas, pure functions, inductive types)

> First class types (i.e. types are standard values)

» Resource-aware (separation of specification vs. runtime)

» Strict (with explicit Laziness annotations)

» Compiled to ChezScheme (great target for a functional language)

Correct by Construction #24

In This Talk: Idris 2

» Functional (lambdas, pure functions, inductive types)

> First class types (i.e. types are standard values)

» Resource-aware (separation of specification vs. runtime)

» Strict (with explicit Laziness annotations)

» Compiled to ChezScheme (great target for a functional language)
» Self-hosted (reasonably fast!)

Correct by Construction #24

In This Talk: Core Idea

Define a Domain Specific Language internalising Separation logic ideas

Correct by Construction #25

In This Talk: Core Idea

Define a Domain Specific Language internalising Separation logic ideas

» Linearity (ab)used to ensure global uniqueness

Correct by Construction #25

In This Talk: Core Idea

Define a Domain Specific Language internalising Separation logic ideas

» Linearity (ab)used to ensure global uniqueness

» Ownership proofs instead of raw pointers

Correct by Construction #25

In This Talk: Core Idea

Define a Domain Specific Language internalising Separation logic ideas

» Linearity (ab)used to ensure global uniqueness
» Ownership proofs instead of raw pointers
» Erasure to get rid of specification data (values showing up in Ps, Qs, Rs)

Correct by Construction #25

Ownership Type

region[start, end] — vs

data Owned
(region : Region) —-> (start, end : Nat) ->
(vs : List Bits8) —-> Type where

Correct by Construction #26

Read

vV =getBitss8(idx);

Correct by Construction #27

Read

{ region|[start, end] — vs }

vV =getBitss8(idx);

Correct by Construction #27

Read

region(start, end] — vs
* 0<idx < |vs|

vV =getBitss8(idx);

Correct by Construction #27

Read

region(start, end] — vs
* 0<idx < |vs|

vV =getBitss8(idx);

region[start, end] — vs
x v =vs[idx]

Correct by Construction #27

Read

region(start, end] — vs
* 0<idx < |vs|

v = getBitss8(idx);

region[start, end] — vs
x v =vs[idx]

getBits8
LinearIO io =>
{start, end : Nat} —>
(1 _ : Owned region start end vs) ->
(idx : Nat) -> (0 _ : InBounds idx vs) —>
Ll io (WithVal (Owned region start end vs)
(Singleton (index idx vs)))

Correct by Construction #27

Write

setBits8(idx, val);

Correct by Construction #28

Write

{ region(start, end] — vs }

setBits8(idx, val);

Correct by Construction #28

Write

region[start, end] — vs
* 0<idx <|vs|

setBits8(idx, val);

Correct by Construction #28

Write

region[start, end] — vs
* 0<idx <|vs|

setBits8(idx, val);

{ region[start, end] — vs[idx := val] }

Correct by Construction #28

Write

region(start, end] — vs
* 0<idx<|vs|

setBits8(idx, val);

{ region[start, end] — vs[idx := val] }

setBits8
LinearIO io =>
{start : Nat} —>
(1 _ : Owned region start end vs) —>
(idx : Nat) -> (0 _ : InBounds idx vs) ->
(val : Bits8) —>
Ll io (Owned region start end (replaceAt idx wval vs))

Correct by Construction #28

Split

splitat(m);

Correct by Construction #29

Split

{ region[start, end] — vs +- ws }

splitat(m);

Correct by Construction #29

Split

region[start, end] — vs + ws
* |vs|=m

splitat(m);

Correct by Construction #29

Split

region[start, end] — vs + ws
* |vs|=m

splitat(m);

region|start, start + m] — vs
*x region[start + m, end] — ws

Correct by Construction #29

Split

region[start, end] — vs + ws
* |vs|=m

splitat(m);

region|start, start + m] — vs
x region[start + m, end] — ws

splitAt
{0 vs, ws : List Bits8} ->
{m : Nat} -> (0 _ : HasLength m vs) ->
Owned region start end (vs ++ ws) -Q@

LPair (Owned region start (start + m) vs)
(Owned region (start + m) end ws)

Correct by Construction

Combine

combine();

Correct by Construction #30

Combine

region[start, middle] — vs
* region[middle, end] — ws

combine();

Correct by Construction #30

Combine

region[start, middle] — vs
* region[middle, end] — ws

combine();

{ region[start, end] — vs + ws }

Correct by Construction #30

Combine

region[start, middle] — vs
* region[middle, end] — ws

combine();

{ region[start, end] — vs + ws }

(++)
Owned region start middle vs -(@
Owned region middle end ws —(@
Owned region start end (vs ++ ws)

Correct by Construction #30

Map Type

Map : (Type -> Type) —> Type
Map io =
forall region. {start, end : Nat} ->
{0 trees : List Bits8} ->
(saw : Bits8 -> Bits8) —>
(1 _ : Owned region start end trees) ->
Ll io (Owned region start end (map saw trees))

Correct by Construction #31

Sequential Map - Loop Type

=)

FERRRERN®P9P9999999099

Correct by Construction #32

Sequential Map - Loop Type

=)

113 I I EXX XXX Y]

(1 _ : Owned region start end ((map saw treesL) <>> treesR)) —>
Ll io (Owned region start end (map saw (treesL <>> treesR)))

Correct by Construction #32

Sequential Map - Loop Type

=)

[> >) B =,)
| PR RPP99999999999
(1 _ : Owned region start end ((map saw treesL)) <>> treesR)) -—>

Ll io (Owned region start end (map Saw—{tre€ésL <>> treesR)))

Correct by Construction #32

Sequential Map - Loop Type

=)

PRIRIRES 99999999909

(1 _ : Owned region start end ((map saw treesL) <>>(treesR)) -—>
Ll io (Owned region start end (map saw (treesL <>> tré&esK)))

Correct by Construction #32

Parallel Map

Correct by Construction #33

Parallel Map

halve
{start, end : Nat} -—>
(1 _ : Owned region start end trees) ->
Res Nat (\ m =>
LPair (Owned region start (start + m) (take m trees))

(Owned region (start + m) end (drop m trees)))

Correct by Construction #33

Parallel Map

halve

{start, end

(1 _

Owned

Res Nat (\ m
LPair (Owned

parl

(Owned

L1 IO a

Nat} -—>

region start end trees) ->

=>

region start (start + m) (take m trees))
region (start + m) end (drop m trees)))

-@ L1 I0 b -@ L1 IO (LPair a b)

Correct by Construction

#33

Parallel Map

halve
{start, end : Nat} -—>
(1 _ : Owned region start end trees) ->
Res Nat (\ m =>
LPair (Owned region start (start + m) (take m trees))

(Owned region (start + m) end (drop m trees)))

parl : L1 IO a -@ L1 IO b -@ L1 IO (LPair a b)

parMapRec : Map IO -> Map IO
parMapRec subMap saw buf
= do let (m # lbuf # rbuf) = halve buf
(lbuf # rbuf) <- parl (subMap saw lbuf) (subMap saw rbuf)
let 1 buf = lbuf ++ rbuf
purel (reindex (mapTakeDrop saw m trees) buf)

Correct by Construction

#33

Parallel Reduce

Apply the same principles to get a parallel reduce
Relying on monoid laws to prove correctness

Correct by Construction #34

What's next?

Separation logic has a lot more to offer!
» Partial ownership (shared reads, owned writes)
» Locks (non-deterministic access to shared resources)
» Ghost states (stateful specification data)

Use these building blocks!
> Richly typed parallel skeletons
» Reintroduce layers of abstractions (e.g. inductive types)
» Seamless programming over serialised data
» Concurrent programs

Correct by Construction

#35

Happy to Chat! See You in Glasgow?

@ https://gallais.github.io
@ https://mamot.fr/ @gallais

TYPES 2025 — 9-13 June
Glasgow, Scotland
https://msp.cis.strath.ac.uk/types2025/

Correct by Construction

https://gallais.github.io
https://mamot.fr/@gallais
https://msp.cis.strath.ac.uk/types2025/

	Motivation: Correct Concurrent Programs
	Hoare Logic for Correct Imperative Programs
	Separation Logic for Correct Concurrent Programs
	Correct by Construction Concurrent Programs

