Introduction

Context & Experience
Outcomes

Conclusion

Against (Formal) Method?

An experience report on Formal Methods from a developer
point-of-view

Arnaud Bailly - @abailly.bsky.social
Pankzsoft

2025-03-14

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Introduction

Context & Experience
Outcomes

Conclusion

Introduction

Arnaud Bailly - @abailly.bsky.social

Against (Formal) Method?

Introduction

Agenda

Introduction

Context & Experiments
Findings & Analysis
Takeaways & Conclusion

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Introduction

Where do | speak from?

Dev/Tech Lead/Architect/Consultant for 30+ years
PhD in computer science (20 years ago)

Dedicated eXtreme Programming Practitioner
Cautious believer in the benefits of formal methods
Experience limited to specific types of software

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Introduction

Too Long; Didn't Stay

Formal Methods (FM) are not a Silver Bullet but a useful tool that
can bring value to most software development efforts

» Proving software correctness is still out of reach for most
teams and systems

e FMs can be introduced incrementally in the Software
Development Lifecycle (SDLC)

e FM can help grow and maintaing a powerful Ubiquitous
Language

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Introduction
Context & Experience
Outcomes
Conclusion
:

Context & Experience

Arnaud Bailly - @abailly.bsky.social

Against (Formal) Method?

Context & Experience

Why use Formal Methods?

e Fun: Because it's so cool..

o Computer science: Study type systems, mathematics,
programming languages, etc.

» Applied science: Back research with machine-checkable proofs
of stated properties

o Software quality: Provide strong safety guarantees make the
software right

o Software design: Improve design with better models
make the right software

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Context & Experience

Cardano

Key features:

» Globally distributed and fully decentralized open system w/
3000+ block producing nodes and 100s of developers

o Security & safety are critically important

e Established tradition of working with Formal Methods

® Research plays a key role in the system's development

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Context & Experience

R&D Projects

Projects | worked on had a common theme:

* More or less (more) complex algorithms and protocols w/
proven properties

» Written by cryptographic & security researchers, aka.
mathematicians, with heavy proof apparatus

* Require collaboration of people with diverse background and
skills

» Strong safety and/or liveness requirements

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Introduction

Context & Experience
Outcomes

Conclusion

How do we turn research papers into reliable working
software?

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Context & Experience

research paper software O

O —

___writes™> <code—

l how do we know developer

contains they match?

v

properties &
proofs

researcher

Figure 1: Relating Proofs & Programs

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Introduction

Context & Experience
Outcomes

Conclusion

Researchers are Domain experts

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Context & Experience

Peras

* One project within Innovation streams

o Experiment and refine structured method to go from research
ideas to products

* Small (3.5 people) team: Researcher, FM engineer, 2 x
Architects/Developers

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Context & Experience

Process & Tools

@)

=

O @]

O - Formal O
—— > SpeciFication business

engineers S e experts

RN Prototyping /
o _---= ~< %
- Product

developers

Figure 2: Peras workflow

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Context & Experience

AQ: Network performance formalism

Agda: Formal specification language

Agda2HS: Generate Haskell code from Agda specification
quickcheck-dynamic: Haskell code to generate conformance
tests

Haskell and Rust: Target languages for prototypes

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Context & Experience

Agda as specification language

® Protocol modelled in Agda using Small-steps semantics
specifying the impact of each node “actions” on global state

e Took inspiration from previous work on Formalizing
Nakamoto-Style Proof of Stake in Coq

» Heavy emphasis on producing a readable specification

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

https://peras.cardano-scaling.org/agda_html/Peras.SmallStep.html
https://eprint.iacr.org/2020/917.pdf
https://eprint.iacr.org/2020/917.pdf

Context & Experience

module Peras.SmallStep where

Small-step semantics

The small-step semantics of the Ouroboros Peras protocol define the evolution of the global state of the system modelling
honest and adversarial parties. The number of parties is fixed during the execution of the protocol and the list of parties has
to be provided as a module parameter. In addition the model is parameterized by the lotteries (for slot leadership and voting
committee membership) as well as the type of the block tree. Furthermore adversarial parties share generic, adversarial state.

References:
« Formalizing Nakamoto-Style Proof of Stake, Sgren Eller Thomsen and Bas Spitters
Parameters

The parameters for the Peras protocol and hash functions are defined as instance arguments of the module.

module _ : Hashable Block |}
: Hashable (List Tx) |
: Params |
: Network |
: Postulates |}

Figure 3: Agda Specification

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Context & Experience

Agda driving conformance tests

Figure 4: Peras testing

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Introduction
Context & Experience
Outcomes
Conclusion
:

Outcomes

Arnaud Bailly - @abailly.bsky.social

Against (Formal) Method?

Introduction

Context & Experience
Outcomes

Conclusion

What went well

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Outcomes

A Better Standard

Literate Agda formed the backbone of a Cardano Improvement
Proposal standard specification.

1P-0140 /

An gnine simuor 1or veras s avaiiore.
Normative Peras specification in Agda
The following formal, relational specification for Peras tyj

specification with the Agda compiler and see githubrinput-output-hk/per.
cation.

endix for instruction on type-checking this
for proofs and other modules related to this

module README where
Most of the imports come from the Ag

bata.Bool using (Bool; if_the
a.Enpty using (1)
t Data.Fin

t
dropuhile; filter; head; map; mapMaybe; sum;

ny 0; s)
renaning (length to I_I)
import Data.List.Membership. Propa

.Properties
t Data.Product using (proji; proj
)

Figure 5: CIP-140

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

https://github.com/cardano-foundation/CIPs/tree/master/CIP-0140
https://github.com/cardano-foundation/CIPs/tree/master/CIP-0140

Outcomes

Improved Feedback loop

» Formalisation (and prototyping) uncovered shortcomings in
the protocol that lead to improvements

» Interaction of formal modeling and prototyping uncovered a
few bugs in both

e Having a “small” formal model helped bootstrap development
beyond prototyping

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

https://tweag.github.io/cardano-peras/peras-design.pdf
https://tweag.github.io/cardano-peras/peras-design.pdf

Outcomes

Towards a “Security Research” DSL

Voting and Block Creation

Parties P vote and create blocks as follows:

upon entering new slot s
if P is leader in slot s
B := new block extending C, ¢
if Certs|[ryyren-2] = null
and rgrene - round(certe,.,) <= A

and round(certg.,) > round(certg.,)
B i= (B, certye)
= Coer |1 B

Corer
output (chain, C,<-W>) to Z

Figure 6: “Informal” pseudocode

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Outcomes

Variables

Cpref : Chain —- Preferred Peras chain
certseen : Certificate -- Latest certificate in Certs
certchain : Certificate -- latest certificate on Cpref
Vpref : List (set Vote) - Pref. vote sets (idx'd by rd no)
Certs : List Certificate —- Pref. certificates (idx'd by rd no)

Below, it is assumed that certseen and certchain are updated automatically when Certs or Cpref change.

Voting and Block Creation

Parties P vote and create blocks as follows:

onNewSlot : Party -> Slot -> Node T
onNewSlot p s =
when (p isLeaderInSlot s) (do
b ¢ forgeBlock Cpref
let rcurrent =s / U
when
((Certs [rcurrent - 2 1) == null
A ((rcurrent - round certseen) = A)
A (round certseen > round certchain)
) do
let b' = Certify b certseen
Cpref ¢ Cpref extendWith b’
output (Cpref trimmedBy W))

Figure 7: “Formal” pseudocode

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Introduction

Context & Experience
Outcomes

Conclusion

What could be improved

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Introduction

Context & E> ience
Outcomes

Conclusion

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Outcomes

» Integrating FM engineering in the day-to-day activity of the
team is not straightforward

* FM engineering is a specialty that's not (yet) widespread

o Creating silos is a slippery slope that leads to DBA or Ivory
Tower architects situations

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Introduction

Context & Experience

Coping with change

Cromrite @uper_slotasblocks - W) //; [1
ite -2isize_cat -21(sizemap (pos~~ N)).
applysuntq leq size.
Con Uniqueness of Sbs in worlé-tree +)

{renrit

ange men_filter.

ekeistor,
Co Establishing positians in cst and

C apply/subset_trans; firit
pply/subset_trans; First o, apply/Filter s
PPLu/ubastotrane; fiose) /G
Pply/honest_tres story_subsat,)
R prien g jou
have O oS e

oo lusFequal; e addnc. 3
Cenrite Inap_cat f3ize
renrite eqseq_cats> [/andP [1/eqp €1
fenrite eqseq_cates [/andp []/eq’)‘sl

Crewite sizecat adinh adinc.
ply/f_equal; renrite addnC.

renrite tnaplest Thize

poeiis emsgaats [/ande (e caie I]; ¢

rearite men_cat csiio men_rev mem_iota addin.
€ The supe? block fas avare of b uhen mined.)
< Jefo sb bhl.

{ ‘,pvy/esy./m T ehai
7 as i hstnenoney (41 o+ es13).

2pply/(@subset_trans _
+ renrite -bel_layout -/(s es_layout 2lcatA.

e SRR @ et

Cearite addnd]

2ppLy/subseq_uniq; [|2pply/Cunique_sb_pos NoN) => //].
opplu/map subseq/Filter_subseq.)

(o Subset of pos >

oLl shpormapy 11 5 + 3 sty

reite fsuper blocks verld ra

nove/an

applasmest-chain-in_all.

135
i sl

3
cat lota.dd Irev_cat ~cath = /e
T 1 staemap sizerey size.

Outcomes
Conclusion

Fencite subnl leq_pred].

10
_Bh): (best_chain_valid (tree 11) (tnow N -1D).

Subsei honest.tree NN honest_p1).
fes) e csiaec DD

eu-cat —cath ~caths> /eqP.
reneite sizemap

dota,
Tenfite sizenap sizecrev size iota.

G2 D2 G s e v st ve @ D

il “eath. rerite cs layout beitagout.
pply/best-chain-yatid,
- apply/Csubset_trans _ Chonest._tree_gb_history_subset NON)).

o/ Coubsettrans - Coubset honest_ree NN honest_pa state.pi)=> //.

Lall _ (Ctonow N) -1) (tree 11)))/filter_subset. }

Figure 9: Coq Proof fragment

Arnaud Bailly - @abailly.bsky.social

Against (Formal) Method?

Introduction

Context & Experience
Outcomes

Conclusion

How do we keep formal specifications and FM artefacts
maintenable over time?

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Outcomes

Tools & Process

» Tooling is not on par with “industrial languages”

® Research and industry needs and interests are not always
aligned

e FM is a very fragmented landscape with mostly incompatible
ecosystems

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Introduction
Context & Experience
Outcomes
Conclusion
:

Conclusion

Arnaud Bailly - @abailly.bsky.social

Against (Formal) Method?

Introduction

Context & Experience
Outcomes

Conclusion

Philosophical detours

Arnaud Bailly - @abailly.bsky.social

Against (Formal) Method?

Introduction

Context & Experience
Outcomes

Conclusion

IST METHOD

Introduced by lan Hacki

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Introduction

Context & Experience
Outcomes

Conclusion

LELCEWENS

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Introduction

Context & Experience
Outcomes

Conclusion

Use formal specification to interact with domain experts as early as
possible

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Introduction

Context & Experience
Outcomes

Conclusion

Model-based Testing is a great way to introduce formal languages
and methods

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Introduction

Context & Experience
Outcomes

Conclusion

Start small, focusing on important/critical components of the
system

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Introduction

Context & Experience
Outcomes

Conclusion

Ensure collective code ownership training, pairing, mobbing,
mentoring

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Introduction

Context & Experience
Outcomes

Conclusion

Select one tool and stick to it (but select wisely)

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Introduction

Context & Experience
Outcomes

Conclusion

Do not put proofs on the critical path of software delivery

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Conclusion

Santa’s List to the FM Community

» Improve tooling and developer experience

o Lower the barrier of entry through more accessible and
“practical” training material

» Consolidate the formal languages and methods landscape

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Conclusion

Related work

Applying Continuous Formal Methods to Cardano
(Experience Report)

James Chapman Arnaud Bailly Polina Vinogradova
Input Output Input Output Input Output
Glasgow, UK Nantes, France Ottawa, Canada

james.chapman@iohk.io arnaud.bailly@iohk.io polina.vinogradova@iohk.io

Abstract

Cardano is a Proof-of-Stake cryptocurrency with a market
capitalisation in the tens of billions of USD and a daily vol-
ume of hundreds of millions of USD. In this paper we re-
flect on applying formal methods, functional architecture
and Haskell to building Cardano. We describe our strategy, Ledger rules
projects, lessons learned, the challenges we face, and how Consensus

we propose to meet them. —
Networking

CCS Concepts: « Software and its engineering — For-
mal software verification.

Keywords: Agda, Formal Methods, Software Engineering, :
Cardano, Distributed systems verification Figure 1. Cardano node layers

Figure 10: FUNARCH'2024

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Introduction

Context & Experience
Outcomes

Conclusion

Peras website and code repository contain details about the project

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

https://peras.cardano-scaling.org
https://github.com/input-output-hk/peras-design

Conclusion

Thanks

My colleagues at 10G from whom | learnt a lot

BOBKonf organisers for inviting me

Josselin Auguste, Bertrand Bougon, Emmanuel Gaillot, Pascal
Grange, Fabien Lamarque, Xavier Maso, Matthias Neubauer,
and Hugo Traverson for improving it

Christophe Thibaut for the inspiration

* You

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

Introduction

Context & Experience
Outcomes

Conclusion

Questions?

Arnaud Bailly - @abailly.bsky.social Against (Formal) Method?

	Introduction
	Context & Experience
	Outcomes
	Conclusion

