
Microservices Will Break... 
Unless You Do This!

Ivett Ördög
ivettordog.com

BOB Konferenz
2025















Get recipients

Filter

Send message

Wait 2 days

Send discount



Filter

Get recipients

Send message

Wait 2 days

Send discount

��



LET’S LEARN TO FALL



Digging deeper

The Journey

Enlightenment



The Journey



Check availability

Reserve the car

Assign the car



Check availability

Reserve the car

Assign the car



Transactions





#1 Long transactions



#2 No single database



TransactionsFire and Forget

Manual RecoveryBruteforce Recovery
Exponential backoff2-phase commit

Distributed transactions?











#1 Long transactions





#2 Single point of failure



Enlightenment



What if we didn’t 
stick to ACID?



A
C
I
D



Atomicity
All or nothing 
transactions

C
I
D



Atomicity
Consistency
I
D

Always in 
valid state



Atomicity
Consistency
Isolation
D

Transactions 
not committed 
are “invisible”



Atomicity
Consistency
Isolation
Durability

Committed 
transactions 
written to disk



Atomicity
Consistency
Isolation
Durability



Which one are we sacrificing?



TransactionsFire and Forget

Manual RecoveryBruteforce Recovery
Exponential backoff2-phase commit

Saga Pattern
???



Goal: Break up large 
transactions



Let’s organise a ski trip!



✅ ✅ ✅ ✅



What if the hotel is full?



✅ ✅ ❌❌❌



What is a Saga?



Definition: A saga is a sequence of 
independent actions, with idempotent 

compensating actions



#1 Sequence of actions





#2 Compensating actions



❌❌❌



Idempotent 
Compensating actions



Definition: An operation is idempotent, 
when applying it multiple times is 

equivalent to applying a single time



Cancel plane ticket by ID



Order a pizza❌



Eat the remaining pizza✅



Reserve a hotel room❌



Reserve room 404 for tonight✅



Cancel the last reservation❌



Cancel reservation ID I8P1ZZ4✅



What did we lose from ACID?



Atomicity
Consistency
Isolation
Durability



Atomicity
Consistency
Isolation
Durability



Atomicity
Consistency
Isolation
Durability

Entirely lost



Atomicity
Consistency
Isolation
Durability



Atomicity
Consistency*
Isolation
Durability

Eventual 
consistency



Atomicity
Consistency*
Isolation
Durability



Atomicity
Consistency*
Isolation
Durability

Entirely lost



Atomicity
Consistency*
Isolation
Durability



Atomicity
Consistency*
Isolation
Durability

Remaizns true



Atomicity
Consistency*
Isolation
Durability

We gained 
availability



Definition: 
Saga guarantee 



Either everything is successful

Or successful actions are compensated

Or we are in the process of executing the actions



What if an action 
can’t be compensated?



TransactionsFire and Forget

Manual RecoveryBruteforce Recovery
Exponential backoff2-phase commit

Saga Pattern
???



TransactionsFire and Forget

Manual RecoveryBruteforce Recovery
Exponential backoff2-phase commit

Saga Pattern
Forward recovery



Digging deeper



S.E.C.
Saga Execution Coordinator

Saga Log
 



Saga Log
 

#1 
Durable record 
of independent 
actions



Saga Log
 

#2 
Single source 
with fall back 
(Sharded DB)



#1 
Stateless & 
fungible 
process S.E.C.

Saga Execution Coordinator



#2 
Processes the 
Saga LogsS.E.C.

Saga Execution Coordinator



#3 
May fail 
and restart 
at any timeS.E.C.

Saga Execution Coordinator



Happy path



Task list: 
#1 Buy plane ticket
#2 Reserve car
#3 Reserve hotel
#4 Buy ski pass



Task list: 
#1 Buy plane ticket
#2 Reserve car
#3 Reserve hotel
#4 Buy ski pass



Task list: 
#1 Buy plane ticket
#2 Reserve car
#3 Reserve hotel
#4 Buy ski pass

Begin Saga:



#1 Buy plane ticket
#2 Reserve car
#3 Reserve hotel
#4 Buy ski pass

Begin Saga:
Begin #1



#1 Buy plane ticket
#2 Reserve car
#3 Reserve hotel
#4 Buy ski pass

Begin Saga:
Begin #1

✈



#1 Buy plane ticket
#2 Reserve car
#3 Reserve hotel
#4 Buy ski pass

Begin Saga:
Begin #1

✈



#2 Reserve car
#3 Reserve hotel
#4 Buy ski pass

Begin Saga:
Begin #1
Done #1 



#3 Reserve hotel
#4 Buy ski pass

Begin Saga:
Begin #1
Done #1 
Begin #2



🚗

#3 Reserve hotel
#4 Buy ski pass

Begin Saga:
Begin #1
Done #1 
Begin #2



#4 Buy ski pass

Begin Saga:
Begin #1
Done #1 
Begin #2
End #2



And so on...



Begin Saga:
Begin #2
End #2
Begin #3
Done #3
Begin #4
Done #4



Begin #2
End #2
Begin #3
Done #3
Begin #4
Done #4
End Saga



Failure case



#4 Buy ski pass

Begin Saga:
Begin #1
Done #1 
Begin #2
End #2



Begin Saga:
Begin #1
Done #1 
Begin #2
End #2
Begin #3



Begin Saga:
Begin #1
Done #1 
Begin #2
End #2
Begin #3

🏢



Begin Saga:
Begin #1
Done #1 
Begin #2
End #2
Begin #3

❌



Begin Saga:
Begin #1
Done #1 
Begin #2
End #2
Begin #3



Begin Saga:
Begin #1
Done #1 
Begin #2
End #2
Begin #3
Abort Saga



Begin #1
Done #1 
Begin #2
End #2
Begin #3
Abort Saga
Begin Compensate #3



Begin #1
Done #1 
Begin #2
End #2
Begin #3
Abort Saga
Begin Compensate #3

🏢



Begin #1
Done #1 
Begin #2
End #2
Begin #3
Abort Saga
Begin Compensate #3

❌



Begin #1
Done #1 
Begin #2
End #2
Begin #3
Abort Saga
Begin Compensate #3



Begin #1
Done #1 
Begin #2
End #2
Begin #3
Abort Saga
Begin Compensate #3

🏢



Done #1 
Begin #2
End #2
Begin #3
Abort Saga
Begin Compensate #3
End Compensate #3



And so on...



When should we apply 
compensating actions?



#1 Saga log ends with “Begin”



#2 Saga log contains “Abort”



What if an action 
isn’t idempotent?



We can use transactions and 
unique action IDs



Action ID registry



Request Start transaction INSERT IGNORE 
by unique key

Perform action

Roll back 
transaction

Commit 
transaction

Ignore request
Respond with O.K.

Respond with 
failure

Respond with O.K.

Success?

Success?

Unique key 
violation

Other
Error

Yes

No

Yes



Conclusion



#1 Use Saga for long running 
distributed processes



#2 Make all API endpoints 
idempotent



IVETTORDOG.COM


