Things We Never Told Anyone About
Functional Programming

Michael Sperber

@sperbsen@discuss.systems

@ctiwe group

o
@clwe group
software development with FP
software architecture
consulting
software reviews
training
www.active-group.de

funktionale-programmierung.de

http://www.active-group.de/
http://funktionale-programmierung.de/

https://www.theater-u34.de/
guartett/

 "Quartett” by Heiner Muller
 ACUD-Theater

e also Bremen, Apr 12

https://www.theater-u34.de/quartett/
https://www.theater-u34.de/quartett/

What is it good for?

Functional Programming

Build Software Q »
Systems to

Fulfill \i \|¥

Requirements g v

v
v

CC BY 4.0, https://free-vectors.net/business/marked-checklist-vector

https://free-vectors.net/business/marked-checklist-vector

ICFP Papers and Events

Accepted Papers
* Title

»< Abstracting Effect Systems for Algebraic Effect Handlers

& DO

" Abstract Interpreters: A Monadic Approach to Modular Verification

& DOI & Pre-print

- A Coq Mechanization of JavaScript Reqular Expression Semantics

&' Link to publication & DOI & Pre-print

= Almost-Sure Termination by Guarded Refinement

R LTI

& DOI &' Pre-print

ICFP 2024 Distinguished Paper

Snapshottable Stores’

CLEMENT ALLAIN, Inria, France

BASILE CLEMENT, OCamlPro, France

ALEXANDRE MOINE, Inria, France

GABRIEL SCHERER, Université Paris Cité, Inria, CNRS, IRIF, France

We say that an imperative data structure is snapshottable or supports snapshots if we can efficiently capture its
current state, and restore a previously captured state to become the current state again. This is useful, for
example, to implement backtracking search processes that update the data structure during search.

Inspired by a data structure proposed in 1978 by Baker, we present a snapshottable store, a bag of mutable
references that supports snapshots. Instead of capturing and restoring an array, we can capture an arbitrary set
of references (of any type) and restore all of them at once. This snapshottable store can be used as a building
block to support snapshots for arbitrary data structures, by simply replacing all mutable references in the
data structure by our store references. We present use-cases of a snapshottable store when implementing
type-checkers and automated theorem provers.

“use-cases ... type-checkers and automated theorem provers”

S. L. Peyton Jones and J.-M. Eber
How to write a financial contract. 2001

compining togetner simpler contracts, sucn as £/1, wnicn 1n turn are rormed rom
simpler contracts still, such as Dy, Dyo.

At this point, any red-blooded functional programmer should start to foam at
the mouth, yelling |“build a combinator library”. And indeed, that turns out to be
not only possible, but tremendously beneficial.

The finance industry has an enormous vocabulary of jargon for typical com-

combinator

library!

https://www.flickr.com/photos/tambako/4237063719
CCBY-ND 2.0

https://www.flickr.com/photos/tambako/4237063719

OREILLY’

Fundamentals of
Software

Architecture

An Engineering Approach

Mark Richards & Neal Fora

THIRD EDITION

sualising software architecture

Gerald Jay Sussman P

SEIl SERIES IN SOFTWARE ENGINEERING

Simon Brown

SOFTWARE Ltion

DESIGN FOR

FLEXIBILITY Software —

oo resesannns | B Architecture it —
in Practice

Design Patterns

Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

Foreword by Grady Booch

al STARKE
l‘k |¢ HRUSCHEA
—

f*‘_

FRAKTISCHE TIPPS IUR
ARCHITEKTURDOKUMENTATION

b2

S31¥3S ONILNAWOD TYNOISSIH0¥d AFTSIM-NOSIAAy

Software Systems (for People)

 fulfill (human) requirements
e make lives better
* programmed by people

What It Takes

* connecting requirements and software

* programming in the small

* programming in the large and in the long
* human activities around this

Software System Qualities

Management Users Domain Experts
v Y Y
#flexible #efficient
#reliable #usable
vt System
SEOpER #safe #operable
#secure #suitable
] . X
L 4
Product Owner Others Admins

https://quality.arc42.org/articles/arc42-quality-model

o0
a—)

Testers

https://quality.arc42.org/articles/arc42-quality-model

(Functional)
Requirements
and
Programming
in the Small

e data
e functions

HOW TO DESIGN PROGRAMS

Second Edition

amming and Computing

Matthew Shriram
Flatt Krishnamurthi

Michael Sperber und Herbert Klaeren
SCHREIBE DEIN
PROGRAMM!

Einfiihrung in die
Programmierung

TUBINGEN

UNIVERS TY}
PRESS

5 AM

5 AM

12:05 PM

0 PM

M

M

M

M

M

® Transmitting customised ads to set-top boxes with Erlang
Laura M. Castro (University of A Coruria)

Macias Lopez (University of A Coruria)

Programming in the large
Matthias Gorgens (Citrix) e and in the long?

¥ Functional Programming @ Ghent IT Valley
Romain Slootmaekers (Ghent IT Valley)

Nicolas Trangez (Ghent IT Valley)

@ From Streams to Functions (and Back Again)
Frank McCabe (Starview)

¥ Functional Big-Data Genomics H Commermal Users of Functlonal Programmlng
fshish Agarwal (New York University) SEPTEMBER 7TH-9TH — OXFQRD, UNITED KINGDOM

® Using F# to Prove Stabilization of Biological Networks
Samin Ishtiaq (Microsoft)

@ Developing an F# Bioinformatics Application with HTML5 Visualization
Adam Granicz (IntelliFactory)

@ Developing Medical Software in Scala and Haskell
Stefan Wehr (factis research)

¥ Functional programs connected to the power grid
Sebastian Egner (Entelios)

(Vg
.e
=
=
i

@)
<

-

(qv)

&

>
L

Elsewhere ...

- ORTe

A/ber’ff) Brando/;nf
ASEQUATIVE

%%NFJQY TevEL

RO55ED ENERSED

pERPER ot bge
IVSIGHT 1Ty

The Agile Samurai

How Agile Masters
Deliver
Great Software

/ p ;/;7}/“/{7/2/1 < ’,/;:'/Lz'r',')'

> ‘\.\N
&

AV
<

DoMAIN
STORYTELLING

A COLLABORATIVE, VISUAL,
AND AGILE WAY TO BuiLp
DoMAIN-DRIVEN SOFTWARE

STEFAN HOFER
HENNING SCHWENTNER

(hris Richardson

<
’oog

|
|

Ve,
&y,
o

5}10

O0P

MATTHEW SKELTON
and MANUEL PAIS
1

https://www.google.com/url?sa=i&url=https%3A%2F%2Fdddcommunity.org%2Fbook%2Fevans_2003%2F&psig=AOvVaw0PSUg1lyCTnXr1xALKH7B5&ust=1598605819653000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCICyjvaEu-sCFQAAAAAdAAAAABAD

What It Takes

connecting requirements and software & X

programming in the small , ’

programming in the large and in the long X

human activities around this

Programming Structured Design

_ Fundamentals of a Discipline of Computer
in the Large and Program and Systems Design

. Edward Yourdon /Larry L. Constantine
in the Long

€t=A

YOURIDN PRESS COMPUTING SERIES

Evolutionary Software Quality

Functional Suitability
Reliability

Usability

Performance Efficiency

Maintainability

Portability

lll

Source: Markus Harrer, OOP 2023

Functionality and Architecture

4.2. Functionality

Functionality is the ability of the system to do the work for which it was intended. Of all of the
requirements, functionality has the strangest relationship to architecture.

First of all, functionality does not determine architecture. That is, given a set of required
functionality, there is no end to the architectures you could create to satisfy that functionality. At the
very least, you could divide up the functionality in any number of ways and assign the subpieces to
different architectural elements.

Bass, Kazman, Clements: Software Architecture in Practice

Structured Design

Programmin ,
: & 5 Fundamentals of a Discipline of Computer
in the Large and Program and Systems Design

. Edward Yourdon /Larry L. Constantine
in the Long

€t=A

YOURDDN PRESS COMPUTING SERIES

David Parnas (1972)

"We propose [...] that
one begins with a list
of difficult design
decisions or design
decisions which are

likely to change. Each
module is then
designed to hide such
a decision from the
others.."

https://m-cacm.acm.org/magazines/2018/6/228033-an-interview-with-dave-parnas/fulltext?mobile=true

The Monolith is Unmodular

The Modulith -
salvation for the
monolith?

With the advent of microservices, the monolith has developed an image problem. A monolith
with attractive inner values, the well-structured Modulith, is stepping up to save the honour of
the mon olith.The question is whether, instead of the contrast between monolith and
microservice, there is not a continuum of software architectures that have different degrees of
modularisation, increasing in very fine steps.

We will discuss these topics with Dr. S&nke Magnussen and Johannes Rost, who will draw on
their extensive project experience to reflect on modularisation.

https://www.wps.de/en/news/the-modulith-salvation-for-the-monolith

https://www.wps.de/en/news/the-modulith-salvation-for-the-monolith

Microservice Architectures

Y ot N{a'ﬁi"“ Wive?
p RIS SRS o
o e R T s
: - \‘\Mg .:‘z*‘\‘:s&*"; Q-' ot
3 A ; ; . { 8-
A

B el Tk

amazoncom
N—

Decoupled by Default

* immutability
e abstraction boundaries

e expressive interface
languages

e expressive effects

4

E

Putting it all Curriculum for

together CPSA Certified Professional for
Software Architecture®

— Advanced Level -

Module:
FUNAR

Functional
Software Architecture

ISAQB

q |r
https://www.isaqb.org/certifications/advanced level/?lan

https://www.isaqb.org/certifications/advanced-level/?lang=en

A Blueprint for Functional Software Design

* bottom-up

e start with functional qualities

e everything is data

e data modeling with sums and products
e abstraction

 combinator models

* algebraic structures

* mathematical properties

Functional Reactive Animation

Jonal Elliott
Microsoft Research
Graphics Group
conal@microsoft.com

Bottom-Up

Abstract

Fran (I*‘un(:t,it)nal Reactive Animat,i()n) 1s a collection of data
types and functions for composing richly interactive, multi-

media animations. 'T'he key ideas in Fran are its notions of

behauviors and events. Behaviors are time-varying, reactive
values, while events are sets of arbitrarily complex condi-
tions, carrying possibly rich information. Most traditional
values can be treated as behaviors, and when 1mages are
thus treated, they become animations. Although these no-
tions are captured as data types rather than a programming
language, we provide them with a denotational semantics,
including a proper treatment of real time, to guide reason-
ing and implementation. A method to effectively and ef-
ficiently perform ewvent deteclion using interval analysis is
also described, which relies on the partial information struc-
ture on the domain of event times. Fran has been imple-
mented in Hugs, vielding surprisingly good performance for
an interpreter-based system. Several examples are given, in-
cluding the ability to describe physical phenomena involving
gravity, springs, velocity, acceleration, etc. using ordinary
differential equations.

Paul Hudak
Yale University
Dept. of Computer Science
paul .hudak@yale.edu

e capturing and handling sequences of motion input events,
even though motion input 1s conceptually continuous;

e time slicing to update each time-varying animation pa-
rameter, even though these parameters conceptually
vary in parallel; and

By allowing programmers to express the “what” of an
interactive animation, one can hope to then automate the
“how” of 1ts presentation. With this point of view, it should
not be surprising that a set of richly expressive recursive
data types, combined with a declarative programming lan-
guage, serves comfortably for modeling animations, in con-
trast with the common practice of using imperative lan-
guages to program in the conventional hybrid modeling/-
presentation style. Moreover, we have found that non-strict
semantics, higher-order functions, strong polymorphic typ-
ing, and systematic overloading are valuable language prop-
erties for supporting modeled animations. For these reasons,
Fran provides these data types in the programming language

Haskell [9].

Advantages off Modeling lover Presentation

LE) T R . R . oy e e = IR R [

Data Modeling

 functions
e data
e products

* sums FTW
Data Modeling with Sums and Products

25.11.2024 von Michael Sperber und Stefan Wehr

This is an English translation of the German version of this post.

Data Modeling is often an underappreciated aspect of software architecture, yet it plays a c
not only functional but also usability and maintainability goals. Poor data models and poor
models can greatly hinder architecture work. Consequently, data modeling — particularly c
information — should be considered a fundamental responsibility of software architecture

https://funktionale-programmierung.de/2024/11/25/sums-products-english.html|

https://funktionale-programmierung.de/2024/11/25/sums-products-english.html

What We Model When We Model - OO

interface Animal 3
volid runOver();

void feed(Amount amount);

Quelle: Wikipedia }
CC Attribution 3.0 Unported

https://upload.wikimedia.org/wikipedia/commons/b/b4/Nine-banded_Armadillo.jpg
https://commons.wikimedia.org/wiki/File:Nine-banded_Armadillo.jpg

What We Model When We Model - FP

runOverAnimal :: Animal -> Animal

feedAnimal :: Weight -> Animal -> Animal

Quelle: Wikipedia
CC Attribution 3.0 Unported

https://upload.wikimedia.org/wikipedia/commons/b/b4/Nine-banded_Armadillo.jpg
https://commons.wikimedia.org/wiki/File:Nine-banded_Armadillo.jpg

A World of Objects

(© Trustees of the British Museum)

Reality and Snapshots

Architecture Evolution

* model domain with data | _ ,
- functionality

* implement functions

—

e change to achieve
qguality-specific requirements

low coupling => A~ €

Abstraction

tiibi e

A.@

Combinator Libraries

Combinator Libraries

meet functional requirements
facilitate communication

decouple representation from behaior
slow down change

fulfill future requirements without or with
small changes

Algebraic Structures

(MOM)@M-—2>-Me(MeM)"2“-Me M
p®1

MM - M

https://en.wikipedia.org/wiki/File:Monad_unit_explicit.svg

Abstract Nonsense

THE CALCULI OF
LAMBDA-CONVERSION

BY

Why This?

ALONZO CHURCH

PRINCETON
PRINCETON UNIVERSITY PRESS

LONDON: HUMPHREY MILFORD
OXFORD UNIVERSITY PRESS

1941

... profit?

FP/Mathematics and Humans

* Model Human Understanding
(rather than the thing)

* Immutability FTW
* Maths = Patterns for Human Understanding

FP Todos

* top-down FP design
(and meet-in-the-middle)

e architecture documentation
patterns & visualization

* stakeholder communication
* books
* cross-pollination with the non-FP types

	Default Section
	Slide 1: Things We Never Told Anyone About Functional Programming
	Slide 2
	Slide 3: Berlin March 28/29
	Slide 4: FP
	Slide 5: Functional Programming
	Slide 6: ICFP Papers and Events
	Slide 7: ICFP 2024 Distinguished Paper
	Slide 8: S. L. Peyton Jones and J.-M. Eber How to write a financial contract. 2001
	Slide 9: ¬FP
	Slide 10: Software Systems (for People)
	Slide 11: What It Takes
	Slide 12: Software System Qualities
	Slide 13: (Functional) Requirements and Programming in the Small
	Slide 14: Programming in the large ... and in the long?
	Slide 15: Human Activities
	Slide 16: Elsewhere ...
	Slide 17: What It Takes
	Slide 18: Programming in the Large and in the Long
	Slide 19: Evolutionary Software Quality
	Slide 20: Functionality and Architecture
	Slide 21: Programming in the Large and in the Long
	Slide 22: David Parnas (1972)
	Slide 23: The Monolith is Unmodular
	Slide 24: Microservice Architectures
	Slide 25: Decoupled by Default
	Slide 26: Putting it all together
	Slide 27: A Blueprint for Functional Software Design
	Slide 28: Bottom-Up
	Slide 29: Data Modeling
	Slide 30: What We Model When We Model - OO
	Slide 31: What We Model When We Model - FP
	Slide 32: A World of Objects
	Slide 33: Reality and Snapshots
	Slide 34: Architecture Evolution
	Slide 35: Abstraction
	Slide 36: Combinator Libraries
	Slide 37: Combinator Libraries
	Slide 38: Algebraic Structures
	Slide 39: Abstract Nonsense
	Slide 40: Why This?
	Slide 41: Mathematics = Brain Patterns for Thinking
	Slide 42: FP/Mathematics and Humans
	Slide 43: FP Todos

