
Coverage-guided property-based testing

Stevan A

14.3.2025, BOBkonf (Berlin)



Background

▶ Coverage-guided property-based testing
▶ Property-based testing (PBT)
▶ Coverage-guided fuzzing (CGF)



Overview of this talk

▶ History of PBT and CGF
▶ How PBT and CGF work
▶ What the difference is
▶ How to combine the two



History of PBT

▶ John Hughes and Koen Claessen at Chalmers (1999)
▶ Testing formal specifications, type theory connection
▶ QuickCheck
▶ Mathematical properties (proof by structural induction)
▶ More “functional”



History of CGF

▶ Fuzzing (without CG), dial-up modem and rain, Barton Miller
(class project 1988, University of Wisconsin)

▶ Fuzz UNIX command-line utilities

▶ Combine fuzzing with evolutionary algorithms (2007)

▶ AFL by Michał Zalewski (2013).

▶ More “imperative”



How does PBT work?
Example

▶ Nutshell: generate, check, if failed then shrink

Success
prop_reverseReverse : Property (List a)
prop_reverseReverse xs = reverse (reverse xs) == xs

test = check (genList 8 genInt) 123
>>> test prop_reverseReverse
Passed -- (100 tests generated)

Failure
prop_badReverse xs = reverse xs == xs
>>> test prop_badReverse
Failed (Cons 0 (Cons 1 Nil)) -- (Shrunk 6 times)



How does PBT work?
Generate

type Gen a = Prng -> a

genInt : Gen Int
genInt prng = random prng

genList : Length -> Gen a -> Gen (List a)
genList 0 gen prng = Nil
genList n gen prng =

let
(prng', prng'') = split prng
x = gen prng'

in
Cons x (genList (n - 1) gen prng'')



How does PBT work?
Check

type Property a = a -> Bool

type Result a = Passed | Failed a

check : Gen a -> Seed -> Property a -> Result a
check gen seed prop = go 100 (newPrng seed)

where
go 0 prng = Passed
go n prng =

let
(prng', prng'') = split prng
x = gen prng'

in
if prop x then go (n - 1) prng''

else Failed (shrink prop x)



How does CGF work?
Example

▶ Nutshell: start with some corpus of inputs, pick one input,
mutate it, check coverage, promote mutations that increase
coverage, repeat until crash

Programs
>>> fuzz "/bin/ls" (Cons "foo" (Cons "\0" Nil))

Functions
>>> fuzz f (Cons "bar" Nil)

func f (input []byte) {
if input[0] == 'b' {

if input[1] == 'a' {
if input[2] == 'd' {

if input[3] == '!' {
error "input must not be bad!" } } } } }



How does CGF work?
fuzz : ProgramOrFunction -> List Bytes -> Bytes
fuzz p corpus = go corpus (initEnergy corpus) noCoverage

where
go corpus energies coverage =

let
input = choose corpus energies
input' = mutate input
coverage' = execute p input'

in if crashed coverage' then return input' else
if isInteresting input' coverage coverage'
then

let
corpus' = append corpus input'
energies' = assignEnergy corpus' energies

in
go corpus' energies' coverage'

else
go corpus energies coverage



Difference between PBT and CGF?

▶ Generation
▶ PBT requires you to write generators for your input datatypes
▶ CGF merely requires some sample inputs and will mutate from

there
▶ Test execution time

▶ PBT typically takes subsecond to a minute to run
▶ CGF can run for hours or even days

▶ Test depth/coverage
▶ PBT depends on how well designed the generators are, doesn’t

have “memory”
▶ CGF has “memory”, learns and improves from past tests

▶ Correctness
▶ CGF typically only checks if the program crashes
▶ PBT let’s you specify an arbitrary relation between inputs and

outputs



Combining PBT and CGF
Motivation and plan

▶ PBT-style generators to speed up test exeuction
▶ CGF-style coverage-guidance to get “deeper” coverage
▶ Dan Luu’s post (2015)
▶ Most progress have been from “CFG to PBT” (parse random

bytes into data)
▶ Today I’d like to show more of a “PBT to CFG” solution

▶ Key insight: use PBT’s built-in coverage annotations
▶ No need to query compiler for coverage

https://danluu.com/testing/


Combining PBT and CGF
PBT’s built-in coverage (1/2)

- type Property a = a -> Bool
+ type Property a = a -> Result a

type Result a =
{ ok : Bool
, labels : Set String
, counterExample : Maybe a
}

property : Bool -> Result a
property bool =

{ ok = bool
, labels = Set.empty
, counterExample = Nothing
}



Combining PBT and CGF
PBT’s built-in coverage (2/2)

label : String -> Result a -> Result a
label s result = result.labels += s

classify : Bool -> String -> Result a -> Result a
classify True s result = label s result
classify False s result = result



Combining PBT and CGF
Example

bad : Property String
bad s =

classify (s[0] == 'b') "Found b at first position!" (
classify (s[1] == 'a') "Found a at second position!" (
classify (s[2] == 'd') "Found d at third position!" (
classify (s[3] == '!') "Found ! at fourth position!" (
if s == "bad!"
then property False
else property True))))

>>> check (genList 4 genASCIIByte) 123 bad
Passed

>>> guided (genList 4 genASCIIByte) 123 bad
Failed "bad!"



Combining PBT and CGF
Evolutionary algorithm

guided : Gen a -> Seed -> Property (List a) ->
Result (List a)

guided gen seed prop = go 100 (newPrng seed) Nil Set.empty
where

go 0 prng xs cover = { ok = True, labels = cover }
go n prng xs cover =

let
(prng', prng'') = split prng
x = gen prng'
result = prop (append xs x)
cover' = Set.union cover result.labels

in
if ok result
then if Set.size cover < Set.size cover'

then go (n - 1) prng'' (append xs x) cover'
else go (n - 1) prng'' xs cover

else result.cE = Just (shrink prop (append xs x))



Combining PBT and CGF
plain PBT vs CGPBT

▶ 1 ASCII character = 7 bits ⇒ 27 = 128 possibilities

▶ Probability of generating “bad!” using plain PBT:
1

128 × 1
128 × 1

128 × 1
128 = 3.72529 × 10−7%

▶ Probability of winning the lottery: 1 in 292.2 million =
3.42231 × 10−7%

▶ Probability of generating “bad!” using coverage-guidance:
1

128 + 1
128 + 1

128 + 1
128 = 3.125%

▶ In order words coverage-guidance turns an exponential problem
into a polynomial problem!



Recap

▶ History of PBT and CGF
▶ How PBT and CGF works
▶ How they are different
▶ How to combine them
▶ What the benefit of combining them is: from exponential to

polynomial!



Conclusion, further work and questions

▶ First version of QuickCheck (1999) has all the pieces to enable
this!

▶ For more details and a full working implementation, see:
https://stevana.github.io/talk/bobkonf-2025.html

▶ Can get stuck in local maxima, backtrack when no progress is
made (assignEnergy)

▶ Thanks for listening! Questions?

https://stevana.github.io/talk/bobkonf-2025.html

