TN G TECHNOLOGY
CONSULTING

OOP is dead - long live Object Orientation!

- ‘:.' &
® " @

Franz Thoma 3/14/2025 BobKonf 2025, Berlin

mailto:franz.thoma@tngtech.com

TN G TECHNOLOGY
CONSULTING

— About me

Principal Consultant (@ TNG

github.com/fmthoma Franz Thoma

[]
. . . Principal Consultant _.._,. o
u a"ull F-
linkedin.com/in/fmthoma franzthomattngtech.com [ATRES
= Organizer of MuniHac

= Save the date: 12.-14.9.2025

https://tngtech.com/
https://github.com/fmthoma
https://www.linkedin.com/in/fmthoma/
https://munihac.de/
mailto:franz.thoma@tngtech.com
https://www.linkedin.com/in/fmthoma/
https://www.linkedin.com/in/fmthoma/

My first Java “Hello World"

public class HellowWorld {

public static void main(String[] args) {

}

System.out.println("Hello World");

TN — TECHNOLOGY
— CONSULTING

My first Java “Hello World"

public class Helloworld {
public static void main(String[] args) {

System.OUt . println("Heuo World");

TN G TECHNOLOGY
CONSULTING

Very classy!

= Aclass around main
= Objects (out)
= Method calls

(out.println)

My first Java "Hello World" TN G = FEctnowoey

CONSULTING

Very classy?

public class HelloWorld { « Static methods

public StAatl1lC void main(String[] args) { - Eulilie properties
. .pri "Hello World");
} System out.println("Hello World") [System.out)

} » Classes are nothing more

than namespaces

Bl \What's the definition for 00P? TNG = corsuinne

= Polymorphism
= Inheritance

= Encapsulation

What's the definition for OOP? TN G = rectinooer

— CONSULTING

= Subtyping Polymorphism .
= |Inheritance POlymorphlsm

» Encapsulation

= Ad-hoc polymorphism (Overloading)

= Parametric polymorphism (Generics)
» Subtyping polymorphism

= Row polymorphism

B What's the definition for 00P? TN G = [EcrnoLoer

CONSULTING

» Subtyping Polymorphism :
Encapsulation

= Class Encapsulation « ignored? = Module encapsulation

« |Inheritance

= Library encapsulation

» Class encapsulation

= Abstract data types

Getters and Setters

class Box {
private Object thing;

public Object getThing() { return thing; }
public void setThing(Object newThing) { this.thing = newThing; }
t

B What's the definition for 00P? TNG = [etinoroey

— CONSULTING

Subtyping Polymorphism :
» {rheritanee < deprecated? |nher|tance

Class Encapsulation < ignored? Design Patterns

Elements of Reusable
Object—Orieqtgg, Softw re

Richare e [...] our second principle of object-

oriented design: Favor object
composition over class inheritance.

Design Patterns, 1994, Chapter 1

What's the definition for OOP? TN G = rectinooer

— CONSULTING

= Subtyping Polymorphism
» HHREFHEREE Cacprcaten

= Class Encapsulation cigoes

Table of Contents TNG = Sty

1. Problems with Inheritance & Subtyping
2. A better definition for Object-Orientation
3. Putting OOP to good use

TN G — TECHNOLOGY
— CONSULTING

1 Problems with Inheritance &
Subtyping

TN — TECHNOLOGY
— CONSULTING

class InternalFrameInternalFrameTitlePaneInternalFrameTitlePaneMaximizeButtonWindowNotFocusedState extends State {
InternalFrameInternalFrameTitlePaneInternalFrameTitlePaneMaximizeButtonWindowNotFocusedState() {
super("WindowNotFocused");

@0verride protected boolean isInState(JComponent c) {
Component parent = c;
while (parent.getParent() == null) {
if (parent instanceof JInternalFrame) {
break;
}
parent = parent.getParent();
}
if (parent instanceof JInternalFrame) {
return !'(((JInternalFrame)parent).isSelected());
h

return false;

nheritance TNG =&

- (Co0de re-use you should not use

Breaks encapsulation

Tight coupling between parent and child

Non-locality

Overriding vs. Shadowing

Inheritance TNG = I

Favor object composition over class inheritance.

Design Patterns, 1994, Chapter 1

Subtyping Polymorphism TNG = 5

- The Casting Conundrum

if (parent instanceof JInternalFrame) {

if (parent instanceof JInternalFrame) {
return !(((JInternalFrame)parent).isSelected());

Subtyping Polymorphism TNG = corsutnne

- The Casting Conundrum
Subtyping:

= Taxonomy that corresponds to real life

= Handle objects as generically as possible

Subtyping Polymorphism TN G = rechnotooy

CONSULTING

- The Casting Conundrum

Subtyping: ® car ® car
accelerate() accelerate()
= Taxonomy that corresponds to real life / zf ;\ ; i
= Handle ObjeCtS as generlcally as p055|ble @Volkswagen @Audi @BMW @ElectricCar ®InternalCombustionCar
charge() fuel()
However:

= Real-life: Rarely hierarchical
= Diamond problem!
= We often care about the specific sub-type

= Information loss when passing a specific thing to generic code

Subtyping Polymorphism TNG = corsutnne

- The Casting Conundrum

(:) Car

interface Garage {

TiCket paI’k(CaI‘ Car); acce'erate()
Car retrieve(Ticket ticket);
}
ElectricCar eTron = ..; @ElectricCar @lnternalCombustionCar

Ticket ticket = garage.park(eTron);

charge() fuel()

Car eTron = garage.retrieve(ticket);
eTron.charge();

ElectricCar eTron = (ElectricCar) garage.retrieve(ticket);
eTron.charge();

Subtyping Polymorphism TNG = 5

Whenever you cast, you've
already given up on type
safety.

Subtyping Polymorphism TNG = torsuirine

[0 Liskov or not to Liskov?

@ Car

accelerate()

charge()
fuel()
@InternalCombustionCar @ElectricCar
accelerat/e%/\ UnsupportedOperationException % accelerate() UnsupportedOperationException %
charge() charg%
fuel() fuel()

Subtyping Polymorphism TNG = 5

[0 Liskov or not to Liskov?

package java.util;
public abstract class AbstractList<E> extends AbstractCollection<E> implements List<E> {

public void add(int index, E element) {
throw new UnsupportedOperationException();

}

public void remove(int index) {
throw new UnsupportedOperationException();

Subtyping Polymorphism TNG = torsuirine

- | iskov Substitution Principle

@ Rectangle

void resizeX(double factor)
void resizeY(double factor)
= Preconditions of B should be weaker, void resize(double factor)

f A extends or implements B, then:

= Postconditions of B should be stronger,

= and invariants of B should be the same as for A.

© Square

void resizeX(double factor)
void resizeY(double factor)
void resize(double factor)

Subtyping Polymorphism TN G = [ectnowoey

[0 Liskov or not to Liskov?

@throws UnsupportedOperationException

Subtyping Polymorphism TNG = 5

— " NStanceof’

if (car instanceof ElectricCar eTron) {

Subtyping Polymorphism TNG = corsutnne

—— " instanceof’
interface Shape {
double getArea();
= Objects are abstract (Encapsulation!) !

= Execution is driven from inside the objects, not from the outside ,
class Square implements Shape {

= = Class of an object does not matter, only behaviour double getArea() {
. . . return Math.pow(a, 2);
= Unlike Functional Programming }
= In FP, execution is driven by Pattern Matching }
= = |dentity of a constructor is the driving factor in FP class Circle implements Shape {

double getArea() {
return Math.PI * Math.pow(r, 2);

instanceof }
}

= Decision making based on an object’s class
area :: Shape — Double

area (Square a) = a”2
area (Circle r) = pi * r”2

Subtyping Polymorphism TNG = corsutnne

Whenever you re using
instanceof, you've
already given up on OOP.

Subtyping Polymorphism TNG = 5

Whenever you re using
instanceof, you've
already given up on OOP.

You've bought into a poor
man’s version of Pattern
Matching.

Design Patterns TNG = 5

>

Design Patterns

Elements of Reusable
Object—Orlen d Soft

SIS DONILNAWOD T¥VNOISSIH40dd AFT1SIM-NOSIAAy

Design Patterns

OOP:

Visitor Pattern
Interpreter Pattern
Strategy Pattern
Command Pattern

Memento Pattern

FP:

Pattern Matching

Functions & Pattern Matching

Higher-Order Functions

Functions as values

Immutability

TN — TECHNOLOGY
— CONSULTING

Design Patterns

Elements of Reusable
Object-Orien

d by Grady Booch

*

>
=
=
wn
(@)
Z
=
=
m
»
m
<
T
=
®)
-
m
w
@)
Z
>
&=
o
z
)
ez
=]
Z
o
)
m
=
m
w

TN G — TECHNOLOGY
— CONSULTING

2 A better definition for Object-
Orientation

What's the definition for OOP? TN G = rectinooer

— CONSULTING

= Subtyping Polymorphism
» HHREFHEREE Cacprcaten

= Class Encapsulation cigoes

Alan Kay's take on Object Orientation TN G = [ctinowoe

CONSULTING

Dr. Alan Kay on the meaning of
“object-oriented programming”

Dr. Alan Kay was so kind as to answer my questions about the term “object-oriented programming”.
(To link to this page, please use the above PURL-URI only, because any other URI is only temporary.)
Clarification of "object-oriented" [E-Mail]

Date: Wed, 23 Jul 2003 09:33:31 -0800

To: Stefan Ram [removed for privacy]

From Alan Kay [removed for privacy]

Subject: Re: Clarification of "object-oriented"

[some header lines removed for privacy]

Content-Type: text/plain; charset="us-ascii" ; format="flowed"

Content-Length: 4965

Lines: 117

Y

Inspiration for OOP TNG = o

| thought of objects being like biological cells and/or individual computers
on a network, only able to communicate with messages [...].

Alan Kay, in an email to Stefan Ram, 2003
http://www.purl.org/stefan_ram/pub/doc_kay oop_de

http://www.purl.org/stefan_ram/pub/doc_kay_oop_de

On Polymorphism TNG = corsutnne

- Pelymerphism

? |
Inheritance « deprecated?

Class Encapsulation « ignored? My math background made me realize that each object
could have several algebras associated with it [...]. The

term “polymorphism” was imposed much later (I think by

Peter Wegner) and it isn't quite valid [...]. | made up a

term "genericity” for dealing with generic behaviors in a

quasi-algebraic form.

Alan Kay, in an email to Stefan Ram, 2003
http://www.purl.org/stefan_ram/pub/doc_kay oop_de

On Inheritance TNG = corsutnne

Rolymerphism
- ‘I'H'h'e'FFt'a'H'ee |
Class Encapsulation « ignored? | didn't like the way Simula | or Simula 67 did inheritance

[...]. So | decided to leave out inheritance as a built-in

feature until | understood it better.

Alan Kay, in an email to Stefan Ram, 2003
http://www.purl.org/stefan_ram/pub/doc_kay oop_de

What's the definition for OOP? TN G = rectinooer

— CONSULTING

Rolymerphism
‘I‘H‘h'e'Fi't'a'H'ee |

= Only Messaging OOP to me means only messaging, local

= Encapsulation retention and protection and hiding of
- Late Binding state-process, and extreme late-binding of

all things.

Alan Kay, in an email to Stefan Ram
http://www.purl.org/stefan_ram/pub/doc_kay oop_de

What's the definition for OOP? TN G = rectinooer

— CONSULTING

= Only messaging
u E n Ca pS U I.atlo n local retention, protection and hiding

= Late binding

What's the definition for OOP? TNG = Goonse

— "Only messaging”

= Objects communicate with each other using messages
= cf. Actor models (Erlang, Akka)

= Not just method calls!

What's the definition for O0P? TNG = Eiioesy

- "|_ocal retention and protection and hiding of state-process”

= Objects keep their own local state
= retention = they can have local state
= protection = it's not accessible to the outside
= hiding = it's not even visible to the outside, except for message passing

= cf. Encapsulation!

What's the definition for O0P? TNG = Eiioesy

- "Extreme late-binding of all things™

If one object stops functioning, messages are not consumed any more, but the rest still keeps running

Individual objects can be exchanged/updated at runtime, without having to shut down the entire system

cf. dynamic dispatch of object methods

= Downside: Runtime errors (" ClassNotFoundException”, “NoSuchMethodException”)

TN G — TECHNOLOGY
— CONSULTING

3 Putting OOP to good use

Putting OOP to good use TNG =5

interface Garage {
Ticket park(Car car);
Car retrieve(Ticket ticket);

}

Putting OOP to good use TNG = 5

Garage AP| @

interface Garage { garage-api/garage-api.yml

Ticket park(Car car);
Car retrieve(Ticket ticket);

}
Park a car A

‘ POST /garage/cars Park a car in the garage A4 ’

Retrieve a car A

‘ /garage/cars/{ticket} Look up acar v ’

‘)N 9 /garage/cars/{ticket} Retrieve a car from the garage, redeeming the ticket A4 ’

Schemas A

car »>

http://localhost:3030/iframe/garage-api/garage-api.yml

Putting OOP to good use TNG = e

— "Only messaging”

OrderService

= Service communicate with each other using (actual!) messages

= Synchronously (REST) or asynchronously (Kafka etc.)

HTTP
= Not just method calls!

BillingService AccountService

Putting OOP to good use TNG = e

- | 0cal retention and protection and hiding of

state-process” OrderService

= Services keep their own local state

= retention = service (although stateless) has a database Database

= protection = only this service is allowed to access it /

¥ ‘ N

‘ BillingService ‘ >} AccountService

= hiding = outside does not need to know the data model, only the API

= cf. Encapsulation!

Database

What's the definition for O0P? TNG = Eiioesy

- "Extreme late-binding of all things™

OrderService

= |f one service stops functioning, messages are not consumed any
more, but the rest still keeps running.
= Individual services can be exchanged/updated at runtime, independent

from each other, without having to shut down the entire system

BillingService AccountService

= Services can even be enabled/disabled depending on load (auto-

scaling, serverless)

Programming vs. Architectural Paradigms TN G = [scrinowoer

Programming paradigms = Architectural paradigms

= Single team = Across teams

= Code level = Organizational level

Programming vs. Architectural Paradigms TN G = [scrinowoer

Programming paradigms = Architectural paradigms
= Static Predictability = Runtime Flexibility
= Cohesion = Loose coupling

= Fault prevention = Fault tolerance

TECHNOLOGY
On types TNG = torsuimme

I’'m not against types, but [don’t know of any type systems that aren’t a
complete pain, so | still like dynamic typing.

Alan Kay, in an email to Stefan Ram, 2003
http://www.purl.org/stefan_ram/pub/doc_kay oop_de

http://www.purl.org/stefan_ram/pub/doc_kay_oop_de

On types TNG =&t

Language Polymorphism
TypeScript Structural Typing, Parametric, Subtyping
Rust Parametric, Ad-hoc

Golang Structural Typing, Parametric

TN G — TECHNOLOGY
— CONSULTING

4 Conclusion

Conclusion TNG = oo

1. The common definition of OOP in terms of “polymorphism, inheritance and encapsulation”
misses the original point.

2. Polymorphism and inheritance are a disadvantage for programming paradigms.

3. “Biological cells that communicate via message passing” «» Microservice Architectures.

4. The principles of OOP are better suited for architectural than programming paradigms.

TECHNOLOGY
CONSULTING

"~ Thank you for your attention
e .. . > Any‘qu'estions? _. : ? !

Franz Thoma
Principal Consultant
franz.thomafdtngtech.com

mailto:franz.thoma@tngtech.com
https://www.linkedin.com/in/fmthoma/
https://www.linkedin.com/in/fmthoma/

TN G TECHNOLOGY
CONSULTING

Franz Thoma

Principal Consultant
franz.thoma(@tngtech.com Eﬂv

mailto:franz.thoma@tngtech.com
https://www.linkedin.com/in/fmthoma/
https://www.linkedin.com/in/fmthoma/

