
1

OOP is dead – long live Object Orientation!

Franz Thoma 3/14/2025 BobKonf 2025, Berlin

mailto:franz.thoma@tngtech.com

2

About me

Principal Consultant @ TNG

github.com/fmthoma

linkedin.com/in/fmthoma

Organizer of MuniHac

Save the date: 12.–14.9.2025

Franz Thoma
Principal Consultant

franz.thoma@tngtech.com

https://tngtech.com/
https://github.com/fmthoma
https://www.linkedin.com/in/fmthoma/
https://munihac.de/
mailto:franz.thoma@tngtech.com
https://www.linkedin.com/in/fmthoma/
https://www.linkedin.com/in/fmthoma/

3 My first Java `Hello World`

public class HelloWorld {

 public static void main(String[] args) {

 System.out.println("Hello World");

 }

}

4 My first Java `Hello World`

Very classy!

A class around main

Objects (out)

Method calls

(out.println)

public HelloWorld {

 public void main(String[] args) {

. ("Hello World");

 }

}

class
static

System out.println

5 My first Java `Hello World`

Very classy?

Static methods

Public properties

(System.out)

Classes are nothing more

than namespaces

public HelloWorld {

 public void main(String[] args) {

. ("Hello World");

 }

}

class

static

System out.println

6 What's the definition for OOP?

Polymorphism

Inheritance

Encapsulation

7 What's the definition for OOP?

Polymorphism
Ad-hoc polymorphism (Overloading)

Parametric polymorphism (Generics)

Subtyping polymorphism

Row polymorphism

Subtyping Polymorphism

Inheritance

Encapsulation

8 What's the definition for OOP?

Encapsulation
Module encapsulation

Library encapsulation

Class encapsulation

Abstract data types

Getters and Setters

Class Encapsulation ← ignored?

Subtyping Polymorphism

Inheritance

class Box {

 private Object thing;

 public Object getThing() { return thing; }

 public void setThing(Object newThing) { this.thing = newThing; }

}

9 What's the definition for OOP?

Inheritance

Design Patterns, 1994, Chapter 1

Inheritance ← deprecated?

Subtyping Polymorphism

Class Encapsulation ← ignored?

[…] our second principle of object-

oriented design: Favor object

composition over class inheritance.

10 What's the definition for OOP?

Subtyping Polymorphism

Inheritance ← deprecated?

Class Encapsulation ← ignored?

11 Table of Contents

1. Problems with Inheritance & Subtyping

2. A better definition for Object-Orientation

3. Putting OOP to good use

12

1 Problems with Inheritance &

Subtyping

13

class InternalFrameInternalFrameTitlePaneInternalFrameTitlePaneMaximizeButtonWindowNotFocusedState extends State {

 InternalFrameInternalFrameTitlePaneInternalFrameTitlePaneMaximizeButtonWindowNotFocusedState() {

 super("WindowNotFocused");

 }

 @Override protected boolean isInState(JComponent c) {

 Component parent = c;

 while (parent.getParent() != null) {

 if (parent instanceof JInternalFrame) {

 break;

 }

 parent = parent.getParent();

 }

 if (parent instanceof JInternalFrame) {

 return !(((JInternalFrame)parent).isSelected());

 }

 return false;

14 Inheritance

Code re-use you should not use

Breaks encapsulation

Tight coupling between parent and child

Non-locality

Overriding vs. Shadowing

15 Inheritance

Design Patterns, 1994, Chapter 1

Favor object composition over class inheritance.

16 Subtyping Polymorphism

The Casting Conundrum

 if (parent instanceof JInternalFrame) {

 if (parent instanceof JInternalFrame) {

 return !(((JInternalFrame)parent).isSelected());

 @Override protected boolean isInState(JComponent c) {

 Component parent = c;

 while (parent.getParent() != null) {

 break;

 }

 parent = parent.getParent();

 }

 }

 return false;

 }

17 Subtyping Polymorphism

The Casting Conundrum

Subtyping:

Taxonomy that corresponds to real life

Handle objects as generically as possible

18 Subtyping Polymorphism

The Casting Conundrum

Subtyping:

Taxonomy that corresponds to real life

Handle objects as generically as possible

However:

Real-life: Rarely hierarchical

Diamond problem!

We often care about the specific sub-type

Information loss when passing a specific thing to generic code

Car

accelerate()

Volkswagen Audi BMW

Car

accelerate()

ElectricCar

charge()

InternalCombustionCar

fuel()

19 Subtyping Polymorphism

The Casting Conundrum

interface Garage {

 Ticket park(Car car);

 Car retrieve(Ticket ticket);

}

ElectricCar eTron = …;

Ticket ticket = garage.park(eTron);

Car eTron = garage.retrieve(ticket);

eTron.charge(); // <- Type error!

ElectricCar eTron = (ElectricCar) garage.retrieve(ticket);

eTron.charge();

Car

accelerate()

ElectricCar

charge()

InternalCombustionCar

fuel()

20 Subtyping Polymorphism

Whenever you cast, you’ve
already given up on type
safety.

21 Subtyping Polymorphism

To Liskov or not to Liskov?

Car

accelerate()
charge()
fuel()

ElectricCar

accelerate()
charge()
fuel()

InternalCombustionCar

accelerate()
charge()
fuel()

UnsupportedOperationException UnsupportedOperationException

22 Subtyping Polymorphism

To Liskov or not to Liskov?

package java.util;

public abstract class AbstractList<E> extends AbstractCollection<E> implements List<E> {

 public void add(int index, E element) {

 throw new UnsupportedOperationException();

 }

 public void remove(int index) {

 throw new UnsupportedOperationException();

 }

}

23 Subtyping Polymorphism

Liskov Substitution Principle

If A extends or implements B , then:

Preconditions of B should be weaker,

Postconditions of B should be stronger,

and invariants of B should be the same as for A .

Rectangle

void resizeX(double factor)
void resizeY(double factor)
void resize(double factor)

Square

void resizeX(double factor)
void resizeY(double factor)
void resize(double factor)

24 Subtyping Polymorphism

To Liskov or not to Liskov?

 * @throws UnsupportedOperationException if the {@code add} operation is not supported by this collection

package java.util;

public interface Collection<E> extends Iterable<E> {

 /**

 * […]

 *

 * @param e element whose presence in this collection is to be ensured

 * @return {@code true} if this collection changed as a result of the call

 *

 * […]

 */

 boolean add(E e);

25 Subtyping Polymorphism

`instanceof`

if (car instanceof ElectricCar eTron) {

Car car = garage.retrieve(ticket);

 eTron.charge();

}

26 Subtyping Polymorphism

`instanceof`

Objects are abstract (Encapsulation!)

Execution is driven from inside the objects, not from the outside

⇒ Class of an object does not matter, only behaviour

Unlike Functional Programming

In FP, execution is driven by Pattern Matching

⇒ Identity of a constructor is the driving factor in FP

instanceof

Decision making based on an object’s class

interface Shape {

 double getArea();

}

class Square implements Shape {

 double getArea() {

 return Math.pow(a, 2);

 }

}

class Circle implements Shape {

 double getArea() {

 return Math.PI * Math.pow(r, 2);

 }

}

area :: Shape -> Double

area (Square a) = a^2

area (Circle r) = pi * r^2

27 Subtyping Polymorphism

Whenever you’re using
instanceof , you’ve
already given up on OOP.

28 Subtyping Polymorphism

You’ve bought into a poor
man’s version of Pattern
Matching.

Whenever you’re using
instanceof , you’ve
already given up on OOP.

29 Design Patterns

30 Design Patterns

OOP: FP:

Visitor Pattern Pattern Matching

Interpreter Pattern Functions & Pattern Matching

Strategy Pattern Higher-Order Functions

Command Pattern Functions as values

Memento Pattern Immutability

31

2 A better definition for Object-

Orientation

32 What's the definition for OOP?

Subtyping Polymorphism

Inheritance ← deprecated?

Class Encapsulation ← ignored?

33 Alan Kay's take on Object Orientation

Dr. Alan Kay on the meaning of
“object-oriented programming”
Dr. Alan Kay was so kind as to answer my questions about the term “object-oriented programming”.

(To link to this page, please use the above PURL-URI only, because any other URI is only temporary.)
Clarification of "object-oriented" [E-Mail]

Date: Wed, 23 Jul 2003 09:33:31 -0800

To: Stefan Ram [removed for privacy]

From Alan Kay [removed for privacy]

Subject: Re: Clarification of "object-oriented"

[some header lines removed for privacy]

Content-Type: text/plain; charset="us-ascii" ; format="flowed"

Content-Length: 4965

Lines: 117

Hi Stefan

34 Inspiration for OOP

Alan Kay, in an email to Stefan Ram, 2003

http://www.purl.org/stefan_ram/pub/doc_kay_oop_de

I thought of objects being like biological cells and/or individual computers

on a network, only able to communicate with messages […].

http://www.purl.org/stefan_ram/pub/doc_kay_oop_de

35 On Polymorphism

Alan Kay, in an email to Stefan Ram, 2003

http://www.purl.org/stefan_ram/pub/doc_kay_oop_de

Polymorphism

Inheritance ← deprecated?

Class Encapsulation ← ignored? My math background made me realize that each object

could have several algebras associated with it […]. The

term "polymorphism" was imposed much later (I think by

Peter Wegner) and it isn't quite valid […]. I made up a

term "genericity" for dealing with generic behaviors in a

quasi-algebraic form.

36 On Inheritance

Alan Kay, in an email to Stefan Ram, 2003

http://www.purl.org/stefan_ram/pub/doc_kay_oop_de

Inheritance

Polymorphism

Class Encapsulation ← ignored? I didn't like the way Simula I or Simula 67 did inheritance

[…]. So I decided to leave out inheritance as a built-in

feature until I understood it better.

37 What's the definition for OOP?

Alan Kay, in an email to Stefan Ram

http://www.purl.org/stefan_ram/pub/doc_kay_oop_de

Polymorphism

Inheritance

Only Messaging

Encapsulation

Late Binding

OOP to me means only messaging, local

retention and protection and hiding of

state-process, and extreme late-binding of

all things.

38 What's the definition for OOP?

Only messaging

Encapsulation local retention, protection and hiding

Late binding

39 What's the definition for OOP?

"Only messaging"

Objects communicate with each other using messages

cf. Actor models (Erlang, Akka)

Not just method calls!

40 What's the definition for OOP?

"Local retention and protection and hiding of state-process"

Objects keep their own local state

retention = they can have local state

protection = it’s not accessible to the outside

hiding = it’s not even visible to the outside, except for message passing

cf. Encapsulation!

41 What's the definition for OOP?

"Extreme late-binding of all things"

If one object stops functioning, messages are not consumed any more, but the rest still keeps running

Individual objects can be exchanged/updated at runtime, without having to shut down the entire system

cf. dynamic dispatch of object methods

Downside: Runtime errors (`ClassNotFoundException`, `NoSuchMethodException`)

42

3 Putting OOP to good use

43 Putting OOP to good use

interface Garage {

 Ticket park(Car car);

 Car retrieve(Ticket ticket);

}

44 Putting OOP to good use

Garage API
garage-api/garage-api.yml

Park a car

POSTPOST /garage/cars Park a car in the garage

Retrieve a car

GETGET /garage/cars/{ticket} Look up a car

DELETEDELETE /garage/cars/{ticket} Retrieve a car from the garage, redeeming the ticket

Schemas

 1.0.0 OAS3

car

interface Garage {

 Ticket park(Car car);

 Car retrieve(Ticket ticket);

}

http://localhost:3030/iframe/garage-api/garage-api.yml

45 Putting OOP to good use

"Only messaging"

Service communicate with each other using (actual!) messages

Synchronously (REST) or asynchronously (Kafka etc.)

Not just method calls!

OrderService

Kafka

AccountServiceBillingService

HTTP

HTTP

46 Putting OOP to good use

"Local retention and protection and hiding of

state‑process"

Services keep their own local state

retention = service (although stateless) has a database

protection = only this service is allowed to access it

hiding = outside does not need to know the data model, only the API

cf. Encapsulation!

OrderService

Database

AccountService

Database

BillingService

Database

47 What's the definition for OOP?

"Extreme late-binding of all things"

If one service stops functioning, messages are not consumed any

more, but the rest still keeps running.

Individual services can be exchanged/updated at runtime, independent

from each other, without having to shut down the entire system

Services can even be enabled/disabled depending on load (auto-

scaling, serverless)

Cloud

Kafka

AccountServiceBillingService

OrderService

HTTP

HTTP

48 Programming vs. Architectural Paradigms

Programming paradigms

Single team

Code level

Architectural paradigms

Across teams

Organizational level

49 Programming vs. Architectural Paradigms

Programming paradigms

Static Predictability

Cohesion

Fault prevention

Architectural paradigms

Runtime Flexibility

Loose coupling

Fault tolerance

50 On types

Alan Kay, in an email to Stefan Ram, 2003

http://www.purl.org/stefan_ram/pub/doc_kay_oop_de

I’m not against types, but I don’t know of any type systems that aren’t a

complete pain, so I still like dynamic typing.

http://www.purl.org/stefan_ram/pub/doc_kay_oop_de

51 On types

Language Polymorphism

TypeScript Structural Typing, Parametric, Subtyping

Rust Parametric, Ad-hoc

Golang Structural Typing, Parametric

52

4 Conclusion

53 Conclusion

1. The common definition of OOP in terms of “polymorphism, inheritance and encapsulation”

misses the original point.

2. Polymorphism and inheritance are a disadvantage for programming paradigms.

3. "Biological cells that communicate via message passing" ⇿ Microservice Architectures.

4. The principles of OOP are better suited for architectural than programming paradigms.

54

Thank you for your attention

Any questions?

Franz Thoma
Principal Consultant

franz.thoma@tngtech.com

mailto:franz.thoma@tngtech.com
https://www.linkedin.com/in/fmthoma/
https://www.linkedin.com/in/fmthoma/

55

Franz Thoma
Principal Consultant

franz.thoma@tngtech.com

mailto:franz.thoma@tngtech.com
https://www.linkedin.com/in/fmthoma/
https://www.linkedin.com/in/fmthoma/

