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future work

But first, why?
Discussions with other 
functional programming 
language users about their IDEs 
and their expectations, and also 
present our work :)

And maybe find how to solve some 
issues with you
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before LSP
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- making everything pure or backtrackable
- pure lexer
- pure parser
- parsing error recovery (faking data when it is missing)
- typechecking already has backtracking

purity unlock memoization for 
incrementality

The paper also describes cool 
applications of static information 
about grammar (error recovery, 

error messages, multi grammar, 
local GLR parser emulation)
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But here we have 
a bottleneck

this is why LSP
since a lot of editors are 

shipped with an LSP Client
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But LSP is not a perfect fit. It 
gives better default
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easy to extend
Syntax highlighting 

by default

LSP
Syntax Highlighting, auto-complete, jump-to-definition, 
hints and hovers, project manipulation, advanced search 
(and a proper parallel client/server + capabilities notion)
and more feature but that assumes class-based and statement based languages.
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An huge migration 
from Merlin 
Server to lsp

Let's observe some feature that diverges from 
the ones supported out of the box

via Code Action
Contextual triggerable action 
on the document

via Custom Request
Lets the client implementing the reaction

that need 
SPECIFIC 

IMPLEMENTATION
The comeback of our potential Bottleneck
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Source Navigation

- Jump to the prev or next phrase 
(toplevel-definition)

- Switch from implementation to 
interface and vice-versa

- Jump to fun/let/module/match

Available via a Code Action

Available via a Code Action

Available via a Code Action

BUT

Highly pollutes the ‘code-action' menu

No nesting/grouping in the 
protocol!

Moving to a Custom Request��
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outlines and 
code structure

Works well for outlines
but not for document 
navigation

��Assumes that all languages 
are TypeScript-like 
(in Outline Kind)
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Implementation of every dedicated requests 
on LSP side + a tunneling request
for client independence. Already used by NeoVim

Start providing canonical implementation for Vim, Emacs and VSCode

the UI of VSCode is surprisingly hard 
to extend properly.

recentlu released! 
OCaml-eglot
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OCaml’s module system supports aliases, includes,
and (higher-order) functors. 

All of these make 
finding any definition more complicated
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 val x : int

end

module Identity (X : S) : S = X

module Simple = struct

 let x = 3

 let y = true

end

module Apply (Id : functor (_ : S) -> S) 

             (X : S) = struct

 include Id (X)

end

module Alias = Simple

module M = Apply (Identity) (Alias)

let y = M.x

Example
Let's find the definition of M.x

● M is the result of applying Apply
● Look up of the Apply functor
● x Come frome the application of Id
● Id is a parameter
● Let's back to the application to inspect it
● The parameter is the functor Identity
● x come from the X argument of the functor
● Let's back to the application to inspect the 

second parameter
● It is the Alias module
● Which is an alias (hehe) for Simple
● We finally find our definition ��Shapes are a new build artifcact that store 

that kind of path in the form of a small 
typed lambda-calculus with products 

associated with UID
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and desc =

| Leaf

| Var of var

| Abs of var * t
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| Struct of (item, t) Map.t
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module M = Apply (Identity) (Alias)

App (

   App (
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type t = desc * source_loc

and item = string * namespace (* val, type, module... *)

and var = ident

and desc =

| Leaf

| Var of var

| Abs of var * t

| App of t * t

| Struct of (item, t) Map.t

| Proj of t * item

module M = Apply (Identity) (Alias)

App (

   App (

     Abs ("Id", Abs("X", App(Var "Id", Var "X"))), 7:0

   , Abs ("X", Var "X"), 3:0),

   Struct { ("x", value) -> Leaf, 5:23

            ("y", value) -> Leaf, 5:33 }), 11:0

A simplified representation

Representing our module M

 this calculus is implicitly typed
since its terms, which we call shapes, are derived from OCaml’s

module terms which are typed-checked by the compiler.

This implies that shapes have a normal form in this calculus
equipped with the usual reduction rules:

App(Abs(x, body), arg) 𝛽 > body[x ← arg]
Proj (( Struct 𝜑 , _ ), 𝑒 ) 𝜋 > 𝜑 (𝑒)
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Reduction

Tricky to solve in presence of 
separate compilation

A very smart idea using Strong Call By Need Reduction
usually useful for proof assistant

Everything is more complicated in presence of a 
sophisticated module language and separate 

compilation
Next step

Project Wide Renaming

Available on last 
version
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SEARCH BY TYPES
Discoverving a new code base can 
be complicated

understanding architecture

We can use:
find-occurences

jump to definition

finding function and modules ocaml.org + manual

???
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How to find function in an 
existing codebase

Finding by usage/example
like in Pharo 

Finding by types
like with Hoogle (Haskell)

In Type we trust !!!
(and it is a very good specification tool)

Hard to implement at the 
editor level



A very desired feature!
Since 2015

- ocaml-hoogle
- ocamlscope
- ocamlscope2
- ocp-index

and the not
well documented
search by polarity 
in Merlin
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What is polarity search?

Every function can be declared as
 type (-’a, +’b) t = ‘a -> ‘b

b is covarianta is contravariant

flagging variances allows us to 
define a very small distance 

computation

minus for contravariant
plus for covariant

string -> int  -string +int
float -> int    +int -float
int -> int -> int   -int -int +int

no support for 
parametric
polymorphism
��
string -> int option     -string +option

Hard to use but a proof that Merlin can fold definition
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During the time
Sherlodoc Dowsing

Compute syntactic score
between type signatures

Perform real unification,
extremely precise

easier to integrate (and maybe more efficient for 
discoveries, rather than finding the perfect-fit 
function)

because the complicated part is about indexation the
full OCaml list of available packages
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Sherlodoc integration inside 
Merlin

without indexation part
and more precise type parameters representation

● We give a standard representation for a query and OCaml types
● We normalize parameters types (making ‘a -> ‘b isomorphic to ‘c -> ‘d)
● We create a list of path and computing distances with specific 

heuristics to every “cases”  (ie, Damareau levensthein distance for 
Type constructors, and relaxed distance between a * b -> c and a -> b 
-> c, to capture more isomorphism)

● We use a stable-marriage algorithm on the matrix (for input 
parameters) to find the best-scored path 

● And we have a score ! And adding some DX tool 
(constructible, doc etc)



future improvement:

- Better heuristics for tycon

- Support for modules, objects, labelled 
arguments and polymorphic variant 
(modulo isomorphism)

- Taking account of user-feedback
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TO CONCLUDE!
Working with IDE is fun!

LSP is a good default
but still need work at the client level

We definitely should make issues on VSCode and LSP 
to relax some part of the protocol

We are working on
- Improve performances
- Maintenance and improvement
- LSP canonical client forVim

Very open to contribution,
feedbacks and REX

Dreams: refactoring engine based on 
beta-reduction and more interactive 

features 

Upstreaming some part of
Merlin inside the OCaml 
Compiler

We have an intern to bootstrap it!

Debug Adapter Protocol? 
TreeSitter?



Beyond the basics of LSP
Advanced IDE Services 

For OCaml
Xavier Van de Woestyne - @vdwxv - xvw.lol

Questions ?


