BEYOND THE BASICS OF |y
ADVANGED IDE SERVICES

FOR ALY

Xavier Van de Woestyne - @vdwx

BEYOND THE BASICS OF |y
ADVANGED IDE SERVICES

FOR [I[H.1]0

Xavier Van de Woestyne - @vdwxv - xvw.lol
Tarides: Making Critical Systems Better)}
robust

secure, high-performance

_ BEYOND THE BASICS OF [&y5
@ ADVANGCED IDE SERVICES

DUNE
compiler A '
ecosystem

0 s __/b/affarm/toa/ug

Q Space
Xavier Van de Woestyne - @vdwxv - xvw.lol
Tarides: Making Critical Systems Better)}

robust
secure, high-performance
reliability

_ BEYOND THE BASICS OF [&y5
@ ADVANGCED IDE SERVICES

DUNE
compiler A '
ecosystem
_- /b/affarm/toa/ ing

Q Space
Xavier Van de Woestyne - @vdwxv - xvw.lol
Tarides: Making Critical Systems Better /}

robust Working in

secure, high-performance SRR ~—— — the Editor Team [on IDE)

/_ An adventure of Merlin and OCaml-(SP-Server

_ BEYOND THE BASICS OF [&y5
@ ADVANGCED IDE SERVICES

DUNE
compiler A '
ecosystem
ﬁ /b/affarm/toa/ ing

, Q Space
Xavier Van de Woestyne - @vdwxv - xvw.lol
Tarides: Making Critical Systems Better Ik

robust Working in

secure, high-performance SRR ~—— — the Editor Team [on IDE)

/_ An adventure of Merlin and OCaml-(SP-Server

_ BEYOND THE BASIGS OF By
~a ADVANGED IDE SERVICES

PUNE : An ML language, a ctrict
9 gz:;':c/zm FU R ' A ' Funcz‘;oua/, Imperativ& 5/71;/‘ a
« A powerful type cystem S
'&'SF platform/tooling GADT¢ be"f’z polymorphicm,),

; , Type inference, Advanced modufe
vV QJSpace system, Q0P with ctructural

Xavier Van de Woestyne - @vdwxv - XvW.Iol cubtyping and ucer defined

effect (ac core language feature)
Tarides: Making Critical Systems Better }}
robust Working in

secure, high-performance SRR ~—— — the Editor Team [on IDE)

/_ An adventure of Merlin and OCaml-(SP-Server

_ BEYOND THE BASIGS OF By
~a ADVANGED IDE SERVICES

PUNE : An ML language, a ctrict
9 gz:;':c/zm FU R ' A ' Funcz‘;oua/, Imperativ& 5/71;/‘ a
« A powerful type cystem S
'&'SF platform/tooling GADT¢ be"f’z polymorphicm,),

; , Type inference, Advanced modufe
vV QJSpace system, Q0P with ctructural

Xavier Van de Woestyne - @vdwxv - XvW.Iol cubtyping and ucer defined

effect (ac core language feature)
Tarides: Making Critical Systems Better }}
robust Working in

secure, high-performance SRR ~—— — the Editor Team [on IDE)

About Merlin

Bagice workflow \
/ and features
About (ep

. Capabilities/Features and
W Aat 1< a Pmigmtion strafeqy
(anguage Server

A very naive editor Timeline

Conclucion and P I'A N Implementation

Future work c{etaiﬁ'dabauz‘dgome
vance
\ /DI’O/COI’\Y LCP D Featvres

' Including a prosf that (ambda Caleulue
and about |/SCode integration can be concretely vsed ac a functional
programmer

— BUT FIRST, WHY?

Discussions with other
functional programming

language users about their IDES /léout /Mel'/fh,
and their expectations, and also Bacice workflow
present our work :) and features
About (ep
A . C’a,baé/‘//tfer/Featureg and
W at s a migration strateqy

(anguage Server

A very naive editor Timeline

Conclucion and P LA N Implementation

Future work c{etaiﬁ'daéauz‘dgome
vance
\ Pro/Cons (op P Featvres

Including a prosf that (ambda Caleulue
and about [SCode integration can be concretely vsed ag a functional
/’r0?kﬂmm€f’

And maybe find how to solve some —/
issues with you

WHAT A Ei[[) T
SHOULD BRING

Good support for
code g’t

(hilighting/fo /c/ ng)

WHAT A Ei[[) T
SHOULD BRING

Improve productivity
(completions/tools/refactoring)

WHAT A S [
SHOULD BRING

Good support for
code editin

i
[A/'/fyﬁt t/‘hg/ Foldin 9)

Improve productivity Swmart and quick
bood support for [com,b/etionc/toa/c/re/actorimg) feedbacks

code editin . S
[A/’/'.?At/‘hg/fb/ﬂ/ (d/aghoflf’, Amﬂ'}

f\g]
WHAT A [T[I[
SHOULD BRING

Improve productivity Swmart and quick
Good support for [com,b/et/‘onc/toa/c/refactor/mg) feedbacks

code editin . S
[Af/fyhffhg/fo/c/ (d/aghoflf’, Am?‘(’]

f\g]
WHAT A [T[I[
_ SHOULD BRING

Jools orchestration
and project

management

Improve productivity Swmart and quick
Good support for [com,b/et/‘ong’/ tools/refactoring) feedbacks

code editin . S
(A,’/,‘?At;hg/fo/d (d/aghoflf’, Am?‘(’]

<
WHAT A [Ei[i[
_ SHOULD BRING

Joole orchestration |
and project
management Project discovery

(Code Navigation)

Improve productivity Smart and quick
Good support for [com,b/etiom(’/ tools/refactoring) feedbacks

code editin : S
(A,’/,‘?At;hg/,fo/d (d/aghoflf’, Amﬂ'}

f\gj
WHAT A [Ei[i[
_ SHOULD BRING

Jools orchestration | \

and profect Return valid
management Project discovery information and

(Code Navigation) mutations

NAIVE EDITOR
TIMELINE

Configurable
7@xt8 aced

“=_ @ NAIVE EDITOR
*~TIMELINE

ACME

Configurable
ﬁxtg aced

“=_ @ NAIVE EDITOR
%~ TIMELINE

ACME
: Fa//y cp ecialized

¥ o Y D€

Abstraction "gPS

over Syntax E @
/NAWE EDITOR
% _~—TIMELINE

ACME
- & Fully specialeed

¥« g IDE

Aéerfkgé; fion E@
/NL;IVE EDITOR
u® >—TIMELINE >3

ACME

e _—— TreesSitter

Abstraction (; 8

over gyhtaxg @ \
Configurable /_
7;35)(;5?5;4
NAIVE EDITOR

% CCTIMELINE.

7 Y Fa//y cpecialize of the Protocol
¥ “ IDE

Abstroaction
over y ﬁX @
Confiqurable /_
Té'sz gcd
NAIVE EDITOR

Ne
% = TIMELINE ’OJWW

¥ « J of the Protocol

Abstractior 3%/_
Siraciion

o s @ \

ety /
- NAIVE EDITOR

%2 W -TINELNE XK/

ACME -l cpecinlze of the Protocol

«g IDE

Abstractior 3%/_
Siraciion

o s @ \

ety /
- NAIVE EDITOR

%2 W -TINELNE XK/ o

ACME -l cpecinlze of the Protocol

«g IDE

MERLIN
2013

Abstraction L 13 /,—

over S yhtax
BEFORE LSP E @ \
Configurable /_
JextBased
o NAIVE EDITOR

%

(@B Fyfly cpecialize
- IDE

Generalization

of the Protocol

SO WHATIS A
LANGUAGE SERVERg

A daemon that receivee text buffer
and user querie¢

S SOWHATIS A
L ANGUAGE SERVERZ

GLOBAL
ARGHITECTURE

018

Documented in

Merlin: A Language Server for OCaml (Experience Report)

FREDERIC BOUR

THOMAS REF]SM]J[}L’ Street, UK

GABRIEL SCHERER, INRIA, France

We report on the experience of developing Merlin, a language server for the OCaml programming language in
development since 2013. Merlin is a daemon that connects to your favourite text editor and provides services

- - — o

Disk
(Build artifacts)

buffer
C——

Client w Editor
——

reply

018

Merlin: A Language Server for OCaml (Experience Report)

FREDERIC BOUR
THOMAS REFIS, Jane Street, UK
GABRIEL SCHERER, INRIA, France

We report on the experience of developing Merlin, a language server for the OCaml programming language in
development since 2013. Merlin is a daemon that connects to your favourite text editor and provides services

) Compiler C— Build System

Disk
(Build artifacts) & buffer
4m——
mmmm) LANZAZE (jient M Editor

server
Include an J

Incremental and Partial
language frontend

reply

(Parser+ Typechecker)

Merlin: A Language Server for OCaml (Experience Report)

FREDERIC BOUR
THOMAS REFIS, Jane Street, UK
GABRIEL SCHERER, INRIA, France

We report on the experience of developing Merlin, a language server for the OCaml programming language in
development since 2013. Merlin is a daemon that connects to your favourite text editor and provides services

018

) Compiler C— Build System

Disk
(Build artifacts) & buffer
4m——
) LANSASE clent GpoduCSly Editor

sServer

Include an J

Tncremental and Partial — deal with missing or wrong part
lanquage frontend

reply

(Parser+ Typechecker)

Merlin: A Language Server for OCaml (Experience Report)

FREDERIC BOUR

o:a/y recomlbutec/ chauged part 10 WS e S pmassase

GABRIEL SCHERER, INRIA, France

We report on the experience of developing Merlin, a language server for the OCaml programming language in
development since 2013. Merlin is a daemon that connects to your favourite text editor and provides services

018

Disk
(Build artifacts)

Compiler C— Build System

é% buffer
4—

Langage Client Request Editor
server &

reply

vendoring and adapting the existing OCaml toolchain
- making everything pure or backtrackable
- pure lexer
- pure parser
- parsing error recovery (faking data when it is missing)
- typechecking already has backtracking

Disk
(Build artifacts)

—

purity unlock memoization for
incrementality

Compiler C— Build System

é% buffer
Cm——
Langage Client Reﬂuest sy
server

reply

vendoring and adapting the existing OCaml toolchain
- making everything pure or backtrackable
- pure lexer
- pure parser
- parsing error recovery (faking data when it is missing)
- typechecking already has backtracking

Disk
(Build artifacts)

—

purity unlock memoization for
incrementality

The paper also describes cool

applications of static information ——

about grammar (error recovery,
error messages, multi grammar,
local GLR parser emulation)

Compiler C— Build System

é% buffer
Cm——

Langage Client Request Edi
* itor
server
—
reply

vendoring and adapting the existing OCaml toolchain
- making everything pure or backtrackable
- pure lexer
- pure parser
- parsing error recovery (faking data when it is missing)
- typechecking already has backtracking

buffer
C——

|Reﬂuest
——

reply

But here we have

a bottleneck

<) Compiler 4mm—— Build System

Disk [
(Build artifacts)

mmmmm) LaANgage

server

Editor

But here we have
a bottleneck

-—) Compiler C— Build System

Disk {
(Build artifacts)

mmmmm) LaANgage

server

Editor

thic i¢ W/\y (SP

But here we have ¢ince a lot of editore are

a botfleneck chipped with an (SP Client

- - — o

Disk
(Build artifacts) buffer
4mm——
s, P edior
client
—
reply

But (SP ic not a perfect fit. It
gives better default

eacy fo extend
Syntax highlighting Syntax Highlighting Hard ts extend
by defavlt m«a/ code folding by Complicated

/ defavlt / profoecol

Syntax Hiﬁhlighting, auto-complete, jump-to-definition,
/ hints and hovers, project manipulation, advanced search
(and a proper parallel client/server + capabilities notion)

and more feature but that assumes class-based and statement based languages.

eacy fo extend

Syntax highlighting Syntax Highlighting A 1o extend
by defavlt and code folding by H?'lo’mp/aic?t:c?
default profoecol

s

(et’c observe some feature that diverges from

/ the onec cupported out of the box

I\JHUGE MIGRATION
FROM MERLIN

SERVER TO LSP

via Code Action

Contextval trigaerable action
on the document

(et’c observe some feature that diverges from

the onec cupported out of the box
/ \ via Custom Request

ITJHUGE MIGRATION
FROM MERLIN

SERVER TO LSP

via Code Action

Contextval triggerable action
on the document

(et’c observe some feature that diverges from

the onec cupported out of the box
/ \ via Custom Request

(Lets the client implementing the reaction

HUGE MIGRATION
FROMMERLIN s

The comeback of our potential Bottleneck

TYPES AND
DOCUMENTATION

TYPES AND
DOCUMENTATION

3 list -> 'b list

y = Stdlib.List.map|

Available via an Hover Prodiver
and Inlay Hints

TYPES AND
DOCUMENTATION

GASE ANALYSIS
AND CONSTRUCT EXPRESSION

GASE ANALYSIS
AND CONSTRUCT EXPRESSION

GASE ANALYSIS
AND CONSTRUCT EXPRESSION

vailable via Code Action and Comp/etion

CASE ANALYSIS”
AND CONSTRUCT EXPRESSION

OPEN REFACTORING

lib > std > ™4 ex.ml >

Foo

4
5

~N O

oo

Foo.a Foo.b Foo.c

OPEN REFACTORING

Foo

10

4
5

~N O

oo

O

Foo.a Foo.b Foo.c

Available via a Code Action

OPEN REFACTORING

SOURCE NAVIGATION

- JumP to the prev or next phrase
(toplevel-detinition)

- Switch from implementation to
interface and vice-versa

- Jump to fun/let/module/match

SOURCE NAVIGATION

Available via a Code Action
- Jum‘o to the prev or next phrase
(toplevel-definition) Dvailable vie. o Code Act:
— vailapl(e via a (ode Aclion
- Switch from implementation to
interface and vice-versa

Available via a Code Action
- Jump to fun/let/module/match —~

SOURCE NAVIGATION

Available via a Code Action
- Jum‘o to the prev or next phrase
(toplevel-detinition)

Available via a Code Action
- Switch from implementation to =~

interface and vice-versa

Available via a Code Action
- Jump to fun/let/module/match —~

/-/igh/y po//uteg the code-action’ menu

SOURCE NAVIGATION ~ ©

Available via a Code Action
- Jum‘o to the prev or next phrase
(toplevel-definition) Dvsilable via. & Code Act:
— vailapl(e via a (ode Aclion
- Switch from implementation to
interface and vice-versa

Available via a Code Action
- Jump to fun/let/module/match —~

Moving to o Custom .,Qequerf — Highly pollutes the code-action’ menu

SOURCE NAVIGATION ~ ©

QUTLINES AND
CODE STRUCTURE

Works well for outlines

/ iit; ;Z; f:ra/ ooooooo
QUTLINES AND
CODE STRUCTURE

v OUTLINE
v {} Foo
el a

€] b

@] c

v {} Bar
el a
[e] x

v el f

ely

el z

Works well for outlines
but not for document
navigation

QUTLINES AND
CODE STRUCTURE

v OUTLINE
v {} Foo
@] a

b

Accumee that all languages Wl
are TypeSecript-like o
(l‘/’l 0 74 t//."le /(I'VI) v @] f

ely

el z

Works well for outlines
but not for document
navigation

QUTLINES AND
CODE STRUCTURE

TYPE-ENCLOSING

TYPE-ENCLOSING ™ ~ 7722~ ==~

type t =
{ result : int
; Job done : bool
}
let £ x =
let init value = x + 1 in
let z =
Stdlib.List.fold left
(fun acc x -> acc + int of string x)
init value
["ivy m2m; "3ty man]
in
{ result = z; job done = true }

let result = £ 10

YPE-ENCLOSING — =~

type t =
{ result : int
; Job done : bool
}
let £ x =
let init value = x + 1 in
let z =
Stdlib.List.fold left
(fun acc x -> acc + int of string x)
init value
["1my m2m; m3vy man]
in

__— The result” has type t

{ result = z; Jjob done = true }

let result = £ 10

TYPE-ENCLOSING — i~

type t =
{ result : int
; Job done : bool
}

let £ x =
let init value = x + 1 1in éat 007‘('/'6{8 ofvthe mac/u/e
let z =
Stdlib.List.fold left it hard to guess what is
(fun acc x -> acc + int of string x) fea&y t
init value
["1my m2m; m3vy man])

o = The result” has type t

{ result = z; Jjob done = true }

let result = £ 10

TYPE-ENCLOSING — i~

¢o we want fo increace the uerbocity [/:4 Emace +

Merlin we can re-call the feature to get the

et — following definition)

}
let £ x =)

let init _value = x + 1 in but ouvteide of the module

type t =

let z =
Stdlib.List.fold left it hard to quess what ic
(fun acc x -> acc + int of string x) keaqy ¢
init value
["1my m2ny m3ny At]

o = The result” has type t

{ result = z; Jjob done = true }

let result = £ 10

TYPE-ENCLOSING — i~

type t =

{ result : int
; Job done : bool
}

let £ x =

let init value = x + 1 in
let z =
Stdlib.List.fold left
(fun acc x -> acc + int of string x)

init value

["ivy m2m; "3ty man]
in
{ result = z; Jjob done = true }
let result = £ 10

TYPE-ENCLOSING™

An other veetul feature is to
grow and chrink the
observable encloging.

one of the main feature of

Merlin

type t =
{ result : int
; Job done : bool
}

let £ x =

let init value = x + 1 in
let z =

Stdlib.List.fold left

An other veetul feature is to

(fun acc x -> acc + int of string x)
init value
["ivy "2, "3ty man]

in

{ result = z; Jjob done = true }

let result = £ 10

TYPE-ENCLOSING™

S

one of

Merlin

grow and chrink the
observable encloging.

['acc -> 'b -> 'acc] -> 'acc -> 'b list -> "acc

the main feature of

type t =
{ result : int

; Job done : bool

} An other veetul feature is to
tet £ x = grow and chrink the
observable encloging.

let init value = x + 1 in
let z =
Stdlib.List.fold left
(fun acc x -> acc + int of string x) ™= == [int -> string -> int] -> int -> string list -> int

init value
["1my m2m; n3vy man]
in
{ result = z; Jjob done = true }

let result = £ 10

TYPE-ENCLOSING — i~

type t =
{ result : int

; Job done : bool

} An other veetul feature is to
tet £ x = grow and chrink the
observable encloging.

let init value = x + 1 in
let z =
Stdlib.List.fold left

(fun acc x -> acc + int of string x) — = int
init value
["1"; "2"; "3"; "4"]

in

{ result = z; Jjob done = true }

let result = £ 10

TYPE-ENCLOSING — i~

type t =
{ result : int

; Job done : bool

} An other veetul feature is to
tet £ x = grow and chrink the
observable encloging.

let init value = x + 1 in
let z =
Stdlib.List.fold left

(fun acc x -> acc + int of string x) = = t: { result: int; job_done: bool }
init value
["1my m2m; "3vy man]

in

{ result = z; job done = true }

let result = £ 10

TYPE-ENCLOSING — i~

type t =
{ result : int

; Job done : bool

} An other veetul feature is to
tet £ x = grow and chrink the
observable encloging.

let init value = x + 1 in
let z =
Stdlib.List.fold left

(fun acc x -> acc + int of string x) = = t: { result: int; job_done: bool }
init value
["1my m2m; "3vy man]

in

{ result = z; job done = true }

let result = £ 10

TYPE-ENCLOSING — i~

type t =
{ result : int

; Job done : bool

} An other veetul feature is to
let © Eou grow and chrink the
observable encloging.

let init value = x + 1 in
let z =
.fold left

(fun acc x -> acc + int of string x) — = int->t
init value
["1"; "2"; "3"; "4"]

in

{ result = z; job done = true }

let result = £ 10

TYPE-ENCLOSING — i~

type t =
type t = result : int
{ result : int ; Jjob_done : bool

; Job done : bool

let f x =
} let init _value = x + 1 in
let z

tet £ x = ist.fold left

acc X & acc + int_of_string x
init_value
let z = wqw. womw. mgw, uwyw

Stdlib.List.fold left

let init value = x + 1 in

result = z; job_done = true
(fun acc x -> acc + int of string x)

init value 7 result = f 10
["1my m2m; m3vy man]
in
{ result = z; Jjob done = true }
let result = £ 10
| Mmex.ml 16:0 All LF UTF-8 Tuareg

YPE-ENCLOSING — =~

type t =
result : int
; job_done : bool

let f x =
let init value = x + 1 in
let
Stdlib.List.fold_left
acc x » acc + int_of_string x
init_value

wqw. womw. mgw, uwyw
? Z 3 4

cugtam /ee?aeff"‘ result = z; job_done = true
Statefvl management on .
the client-cide result = f 10

| Mmex.ml 16:0 All LF UTF-8 Tuareg

TYPE-ENCLOSING — i~

type t =
result : int
; job_done : bool

let f
let init value = x + 1 in
let z =
Stdlib.List.fold_left
acc x » acc + int_of_string x
init_value
: i G e ey
in
result = z; job_done = true

Cuctom Request +
Statefvl management on W
the client-cide

Can't really hook the Hover
Provider

| Mmex.ml 16:0 All LF UTF-8 Tuareg

TYPE-ENCLOSING — i~

LSP MAKES [YKi[j OF
THINGS SIMPLER

LSP MAKES [YKi[j OF
THINGS SIMPLER

but we ¢tifl need dedicated cliente to
handle custom requests

LSP MAKES [YKi[j OF
THINGS SIMPLER

but we ¢tifl need dedicated cliente to
handle custom requests

Implementation of every dedicated requestc /
on (SP side + a tunneling request

for client independence. Already used by NeoVim

Ctart /braw‘a{/rry canonical im,b/ementaz‘ioh for [im, Emacs and [/SCode

LSP MAKES [YKi[j OF
THINGS SIMPLER

but we ¢tifl need dedicated cliente to
handle custom requests

Implementation of every dedicated requeste /
on (SP side + a tunneling request

for client independence. Already used by NeoVim

the UL of VSCode is curprisingly hard

to extend properly. \

Start providing eanonical implementation for /im, Emacs and [/SCode

LSP MAKES [YKi[j OF
THINGS SIMPLER

but we ¢tifl need dedicated cliente to
handle custom requests

Implementation of every dedicated requeste /
on (SP side + a tunneling request

for client independence. Already used by NeoVim

the UL of VSCode is curprisingly hard

to extend properly. \

Start providing eanonical implementation for l/im, Emacs and [/SCode

\ recentlv released!

| Sp MAKES NI 0F
THINGS SIMPLER

but we ¢tifl need dedicated cliente to
| handle custom requests

Implementation of every dedicated requeste /
on (SP side + a tunneling request

for client independence. Already used by NeoVim

IMPLEMENTATION
DETAILS

\ Where the fun begings

PROJECT-WIDE
OCCURRENCES

return every veage of the selected identifier
acrose all of the projects source files

>~ PROJECT-WIDE
OCCURRENCES

/'/ard to achieve in presence of
/ powerful module cystem and
return every vseage 0{ the se/ecz‘ed identiﬁ’er geparate cgmp,‘/aﬁo“
acrose all of the projects source files

>~ PROJECT-WIDE
OCCURRENCES

Hard to achieve in presence 0/
powerful module cystem and

retury every vsage of the selected identifier ceparate cam'bi/aﬁon

acrose all of the projects source files

“~ PROJECT-WID
OCCURRENCE

Module Shapes for Modern Tooling

Ulysse Gérard, Thomas Refis, and Leo White

The ability to look up the definition of a variable is an es-
sential feature of modern programming tooling. Beyond the
simple code browsing action of jumping to that definition,
it is a preliminary for more advanced tasks like fetching
documentation or refactoring. The operation of finding a
definition requires deep knowledge of a language’s seman-
tics to prevent finding erroneous positions in the presence
of overlapping names, shadowed values, or complex features
like module systems with includes and functor applications.

While imprecise results are tolerable for an interactive

"jump to definition" use case, where the user can immediately

the source location of a declaration is therefore as simple as
a lookup in the typing environment.

When trying to find the location of a definition however,
there’s no help to be had from the compiler. So a natural
strategy that tools (e.g. merlin, rotor) can (and do) resort to
is to walk up the typed AST, looking for the definition. On
the example above, to find the definition of N.x we would
first look for the module N, and then inspect its structure to
find the definition of x.

We put an emphasis on walking “up”, because, due to
shadowing, the order in which the tree is visited matters.

- e i

OCaml's module system supports aliases, includes,
and (higher-order) functors.
All of these make
finding any definition more complicated

EXAMPLE

val x : int

end LET'S FIND THE DEFINITION OF

module Identity (X : S) : S = X
module Simple = struct
let x = 3

let y = true
end
module Apply (Id : functor (: S) —-> S)
(X : S) = struct
include Id (X)

end

module Alias = Simple

module M = Apply (Identity) (Alias)

let y = M.x

EXAMPLE

val x : int

end LET'S FIND THE DEFINITION OF

? M is the result of applying Apply

module Identity (X : S) : S = X

module Simple = struct /
let x = 3 //
let y = true /

end

module Apply (Id : functor (: S) —-> S) /

(X : S) = struct

include Td (X) /
end /

module Alias = Simple /
module = ())

let y = M.x

EXAMPLE

val x : int

end LET'S FIND THE DEFINITION OF

e Mis the result of applying Apply

module Identity (X : S) : S =X - -~ Look up of the Apply functor
module Simple = struct __,ﬂ ‘—”
let x = 3 -
-
let y = true "——
end 4”’
-
module (: functor (:) —> S)
(X =) = struct
include (X)
end
module Alias = Simple

module M = Apply (Identity) (Alias)

let y = M.x

module type S = sig

val x : int

end

module Identity (X : S) : S = X

module Simple = struct
let x = 3 ""
let y = true /

end ,ﬂ"

module Apply (Id : functo/(i : 5) -> 9)
(X))=/struct
include Id (X)

end

module Alias = Simple

module M = Apply (Identity) (Alias)

let y = M.x

~

~

EXAMPLE

LET'S FIND THE DEFINITION OF

M is the result of applying Apply
Look up of the Apply functor
X Come frome the application of Id

module type S = sig

val x : int
end
module Identity (X : S) : S = X
module Simple = struct
let x = 3
let y = true - -
end - -
module Apply (:d'f—gunctor (. :8) ->95)
(X : S) = struct

include Id (X)

end

module Alias = Simple

module M = Apply (Identity) (Alias)

let y = M.x

‘....

EXAMPLE

LET'S FIND THE DEFINITION OF

M is the result of applying Apply
Look up of the Apply functor

X Come frome the application of Id
Id is a parameter

EXAMPLE

val x : int

end LET'S FIND THE DEFINITION OF

e Mis the result of applying Apply
module Identity (X : S) : § = X e Look up of the Apply functor
e X Come frome the application of Ic
module Simple = struct e Idis aparameter
let x = 3 e |et's back to the application to inspect it

let vy true //,
end ;’I
module Apply (Id : functor (: S) -> S)’/,
(X : S) = struct ///
include Id (X)
end ’/,

/

module Alias = Simple '/,
module M = Apply (Identity) (Alias)

let y = M.x

EXAMPLE

val x : int

end LET'S FIND THE DEFINITION OF

M is the result of applying Apply
Look up of the Apply functor

module Identitx (X : S8) : S =X
— X Come frome the application of Id

—

[J
[J
[J
[}
[J
~~e The parameter is the functor Identity

module Simple = struct ~ ~ Id is a parameter
let x = 3 ~ ~ Let's back to the application to inspect it
let y = true
end
module Apply (Id : functor (: S) —-> S)
(X ¢ S) = struct

include Id (X)

end

module Alias = Simple

module M = Apply (Identity) (Alias)

let y = M.x

module type S = sig
val x : int

end

module Identity (X : S) : S = X

module Simple = struct

let x 3

let y

true
end
module Apply (Id : functor (: S)
(X : S) = struct
include Id (X)

end

module Alias = Simple

module M = Apply (Identity) (Alias)

let y = M.x

EXAMPLE

LET'S FIND THE DEFINITION OF

M is the result of applying Apply

Look up of the Apply functor

X Come frome the application of Id

Id is a parameter

Let's back to the application to inspect it
The parameter is the functor ldentity

X come from the X argument of the functor

EXAMPLE

val x : int

end LET'S FIND THE DEFINITION OF

e Mis the result of applying Apply
module Identity (X : S) : § = X e Look up of the Apply functor
e X Come frome the application of Ic
module Simple = struct e Idis a parameter
let x = 3 e |et's back to the application to inspect it
let y = true e The parameter is the functor Identity
e Xxcome from the X argument of the functor
end ¢ Let's back to the application to inspect the
module Apply (Id : functor (_: S) -> S) / second parameter
(X : S) = struct
include Id (X) ’/,

end 7
7

module Alias = Simple ’/'
module M = Apply (Identity) (Alias)

let y = M.x

EXAMPLE

val x : int

end LET'S FIND THE DEFINITION OF

e Mis the result of applying Apply
module Identity (X : S) : § = X e Look up of the Apply functor
e X Come frome the application of Ic
module Simple = struct e Idis a parameter
let x = 3 e |et's back to the application to inspect it
let y = true e The parameter is the functor Identity
e Xxcome from the X argument of the functor
end e Let's back to the application to inspect the
module Apply (Id : functor (: S) —-> S) second parameter
(X : S) = struct - It is the Alias module
include Id (X) — -
end — -
— -
module Alias = Simple

module M = Apply (Identity) (Alias)

let y = M.x

module type S = sig

val x : int
end
module Identity (X : S) : S = X

module Simplthruct

let x = 3 ~
let y = true --
end -~.
module Apply (Id : functor (
(X :+ S) = struct
include Id (X)
end
module Alias = Simple
module M = Apply (Identity) (Alias)

let y = M.x

N
S) —>§~

~N

N

EXAMPLE

LET'S FIND THE DEFINITION OF

M is the result of applying Apply

Look up of the Apply functor

X Come frome the application of Id

Id is a parameter

Let's back to the application to inspect it
The parameter is the functor ldentity

X come from the X argument of the functor
Let's back to the application to inspect the
second parameter

It is the Alias module

Which is an alias (hehe) for Simple

module type S = sig
val x : int

end

module Identity (X : S) : S = X

module Simple = struct
let x = 3
let y

true
end
module Apply (Id : functor (: S) —-> S)
(X :+ S) = struct
include Id (X)

end

module Alias = Simple

module M = Apply (Identity) (Alias)

let y = M.x

EXAMPLE

LET'S FIND THE DEFINITION OF

M is the result of applying Apply

Look up of the Apply functor

X Come frome the application of Id

Id is a parameter

Let's back to the application to inspect it
The parameter is the functor ldentity

X come from the X argument of the functor
Let's back to the application to inspect the
second parameter

It is the Alias module

Which is an alias (hehe) for Simple

module type S = sig

val x : int
end
module Identity (X : S) : S = X
module Simple = struct
let x = 3
let y = true
end
module Apply (Id : functor (: S) —-> S)

(X :+ S) = struct
include Id (X)

end

module Alias = Simple

module M = Apply (Identity) (Alias)

let y = M.x

EXAMPLE

LET'S FIND THE DEFINITION OF

M is the result of applying Apply

Look up of the Apply functor

X Come frome the application of Id

Id is a parameter

Let's back to the application to inspect it
The parameter is the functor ldentity

X come from the X argument of the functor
Let's back to the application to inspect the
second parameter

It is the Alias module

Which is an alias (hehe) for Simple

Chapes are a new build artifeact that ctore
that kind of path in the form of a cmall J
typed lambda-calculvs with products

acsociated with (JID

A SIMPLIFIED REPRESENTATION

type t = desc * source loc
and item = string * namespace (* val, type, module... *)
and var = ident
and desc =
Leaf

Var of wvar

App of t * t

|

|

| Abs of var * t
|

| Struct of (item, t) Map.t
|

Proj of t * item

A SIMPLIFIED REPRESENTATION

type t = desc * source loc
and item = string * namespace (* val, type, module... *)
and var = ident
and desc =
\ REPRESENTING OUR MODULE M
Var of var module M = Apply (Identity) (Alias)

Abs of var * t

|
|
|
| App of t * t
| Struct of (item, t) Map.t
|

Proj of t * item

A SIMPLIFIED REPRESENTATION

type t = desc * source loc
and item = string * namespace (* val, type, module... *)
and var = ident
and desc =
\ REPRESENTING OUR MODULE M
Var of var module M = Apply (Identity) (Alias)

|
|
| Abs of var * t

| App of t * t App (
|

|

Struct of (item, t) Map.t App (
Proj of t * item Abs ("Id", Abs("X", App(Var "Id", Var "X"))), 7:0

, Abs ("X", Var "X"), 3:0),
Struct { ("x", wvalue) -> Leaf, 5:23

(Hyl', value) -> Leaf, 5:33 })r 11:0

A SIMPLIFIED REPRESENTATION

type t = desc * source loc
and item = string * namespace (* val, type, module... *)
and var = ident
and desc =
Leaf REPRESENTING OUR MODULE M
Var of var module M = Apply (Identity) (Alias)

|
|
| Abs of var * t
|
|
|

App of t * t App (
Struct of (item, t) Map.t App (
Proj of t * item Abs ("Id", Abs("X", App(Var "Id", Var "X"))), 7:0

, Abs ("X", Var "X"), 3:0),
Struct { ("x", wvalue) -> Leaf, 5:23

this calculus is implicitly typed ("y", value) —-> Leaf, 5:33 }), 11:0
since its terms, which we call shapes, are derived from OCaml's
module terms which are typed-checked by the compiler.

This implies that shapes have a normal form in this calculus
equipped with the usual reduction rules:

App([Abs(x, body], arg] p > body[x « arg]
Proj ([Struct ¢, _),e) 7@ > ¢ (€]

REDUCTION

[ricky to solve in precence of
ceparate compilation

N REDUCTION

[ricky to solve in precence of
ceparate compilation

REDUCTION

An OCaml use case for strong call-by-need reduction

Gabriel Scherer (Partout, INRIA, France)
Nathanaélle Courant (Cambium, INRIA, France)

2022

Shapes

The compiler ar t produces build artifacts that include, in particular, the “typed tree” of each source file.

code analyz

This is a good representation to use for programming tools (IDEs, s, etc.), but it is sometimes

too complex. Consider the following OCaml program:

module Origin = struct let x = 1 end
module Second = struct let x = 2 let y = 2 end

module F(X) = struct

include X

include (Second : sig val y : int end)
end

A very emart idea vsing Strong Call By Need Reduction

usually useful for proof assistant

T/'/céy to colve in presence of
ceparate compilation

An OCaml use case for strong call-by-need reduction

Gabriel Scherer (Partout, INRIA, France)
Nathanaélle Courant (Cambium, INRIA, France)

REDUCTION .

The compiler artifact produces build artifacts that include, in particular, the “typed tree” of each source file.
This is a good representation to use for programming tools (IDEs, code analyzers, ete.), but it is sometimes
too complex. Consider the following OCaml program:

module Origin

struct let x = 1 end
module Second =

= struct let x = 2 let y = 2 end
module F(X) = struct

include X

include (Second : sig val y : int end)
end

Everything is more complicated in presence of a
sophisticated module language and separate
compilation

A very emart idea vsing Strong Call By Need Reduction

usually useful for proof assistant

T/’/céy to colve in presence of
ceparate compilation

An OCaml use case for strong call-by-need reduction

Gabriel Scherer (Partout, INRIA, France)
Nathanaélle Courant (Cambium, INRIA, France)

REDUCTION .

The compiler artifact produces build artifacts that include, in particular, the “typed tree” of each source file.
This is a good representation to use for programming tools (IDEs, code analyzers, etc.), but it is sometimes
too complex. Consider the following OCaml program:

module Origin = struct let x = 1 end
module Second = struct let x = 2 let y = 2 end

module F(X) = struct

include X

include (Second : sig val y : int end)
end

/V Everything is more complicated in presence of a
ext §tep — sophisticated module language and separate

Project Wide Renaming Z

A very emart idea vsing Strong Call By Need Reduction

usually useful for proof assistant

T/’/céy to colve in presence of
ceparate compilation

An OCaml use case for strong call-by-need reduction

Gabriel Scherer (Partout, INRIA, France)
Nathanaélle Courant (Cambium, INRIA, France)

REDUCTION .

The compiler artifact produces build artifacts that include, in particular, the “typed tree” of each source file.
This is a good representation to use for programming tools (IDEs, code analyzers, etc.), but it is sometimes
too complex. Consider the following OCaml program:

module Origin = struct let x = 1 end
module Second = struct let x = 2 let y = 2 end

module F(X) = struct

include X

include (Second : sig val y : int end)
end

/V Everything is more complicated in presence of a
ext §'t8P — sophisticated module language and separate

Project Wide Renaming / sl
A very emart idea vsing Strong Call By Need Reduction

Avm'/a,é/e on [act usually useful for proof assistant

version

[ricky to colve in presence of
ceparate compilation

An OCaml use case for strong call-by-need reduction

Gabriel Scherer (Partout, INRIA, France)
Nathanaélle Courant (Cambium, INRIA, France)

REDUCTION .

The compiler artifact produces build artifacts that include, in particular, the “typed tree” of each source file.
This is a good representation to use for programming tools (IDEs, code analyzers, etc.), but it is sometimes
too complex. Consider the following OCaml program:

module Origin = struct let x = 1 end
module Second = struct let x = 2 let y = 2 end

module F(X) = struct

include X

include (Second : sig val y : int end)
end

SEARCH BY TYPES

SEARCH BY TYPES
AN

Diccoverving a new code bace can
be complicated

understanding architecture

SEARCH BY TYPES
.

Diccoverving a new code bace can
be complicated

finding function and modules

We can vce:
find-occurences

Jump to definition \

undersctanding architecture

SEARCH BY TYPES
.

Diccoverving a new code bace con
be complicated

finding function and modules

We can vce:
find-occurences

Jump to definition \

underctanding architecture

SEARCH BY TYPES
.

Diccoverving a new code bace con
be complicated

Finding Function and modules = ocaml.org + manual

We can vce:
find-occurences

Jump to definition \

underctanding architecture

SEARCH BY TYPES
.

Diccoverving a new code bace con
299 \ /

be complicated
Finding Function and modules = ocaml.org + manual

HOW TO i) FUNCTION IN AN

CODEBASE

Finder

'ocaml'. 'OCAML' Search M Reg Examples Packages... All Packages

» 'molac’ asUppercase -> 'MOLAC'

Browse Senders Implementors Versions Inheritance Hierarchy

Use an example to find a method in the system.

Ehdlh? éy agage/examP/e will find the message #, for strings concatenation

’k N PA 3 will find the message #negated
/’ e 'h ara . will find the message #factorial

will find the message #min:max:

HOW FUNCTION IN AN
CODEBASE

Finder

'ocaml'. 'OCAML' Search M Reg Examples Packages... All Packages

'molac' asUppercase -> 'MOLAC'

Browse Senders Implementors Versions Inheritance Hierarchy

Use an example to find a method in the system.

Ehdlh? éy ugage/examP/e will find the message #, for strings concatenation

’k N PA 3 will find the message #negated
/’ e 'h ara . will find the message #factorial

will find the message #min:max:

CODEBASE

Frnd ng é lf
like with Hoogle @as’ke//)

HOOg)\e [@->b)->[a1-> [b] set:stackage - | search

Packages i (a->b)->[a]->[b]
= isiexact &
= base # map :: (a->b) ->[a] -> [b]

- hackell-ai-bace IR RN 1 R A R < A NI 27 R O I N I T N A

Finder

H&ll’d to I'm/b/emeht at 7¢l8 ‘ocaml'. 'OCAML' Search M Reg Examples Packages... All Packages
edl.tor /eve/ » 'molac’ asUppercase -> 'MOLAC'

Browse Senders Implementors Versions Inheritance Hierarchy

Use an example to find a method in the system.

Ehdlh? éy ugage/examP/e will find the message #, for strings concatenation

’k N PA : will find the message #negated
/’ e 'h ara will find the message #factorial

/ 6. 10. 15. will find the message sminimax:
HOW TO i) FUNCTION IN AN

CODEBASE

Frnd ng é lf
like with Hoogle @as’ke//)

HOOg)\e [@->b)->[a1-> [b] set:stackage - | search

Packages i (a->b)->[a]->[b]
= isiexact &
= base * map : (a ->b) ->[a] -> [b]

- hackell-ai-bace R P e A R g NS 1 R S N R - A T W 0 WA

Finder

HAI’&{ to I'm/b/emeht at fAe 'ocaml'. '"OCAML' Search M Reg Examples Packages... All Packages
edl.tor /eve/ 'molac' asUppercase -> 'MOLAC'

Browse Senders Implementors Versions Inheritance Hierarchy

Use an example to find a method in the system.

Ehdlh? éy ugage/examP/e will find the message #, for strings concatenation

’k N PA 2. -2 will find the message #negated
/’ e 'h ara 3 will find the mess #factorial

/ will find the message #min:max:

FUNCTION IN AN
CODEBASE
Finding by typec /
like with Hoogle @as’ke//)

HOOg)\e [@->b)->[a1-> [b] | [‘set:stackage - | search

Packages i (a->b)->[a]->[b]
= isiexact &

In Type we troust !

(and it ic & very good cpecification tosl)

= base & map :: (a->b)->[a] -> [b]
- hackell-ai-bace IR RN 1 R A R < A NI 27 R O I N I T N A

A VERY DESIRED FEATURE! . ocamivogi

SINCE 2015 - ocamliscope

- ocamiscope2
- ocp-index

Type-directed API search #459

® Open) ghost opened this issue on Oct 29, 2015 - 7 comments

m ghost commented on Oct 29, 2015
and the not
This is a feature request.
] well docvmented
It would be really nice if Mgrlin could perform Cog-like type-directed searches, similar to S'earch by Po/ar;ty
what Searchpattern does in Coq.

in Merlin

The main use case I would have for this feature would be to query "which functions can
produce a type M.t"? Or "which functions use this type M.t"? All that in the context of a large
code base where the user needs a value of type c.t and he knows that function f: A.t -
> B.t -> C.t exists, but then he wonders how to produce a B.t inorder to giveitto f,

and then he finds out after much effort that a function g: D.t -> B.t exists, but then he

(L IYRSPOLARITY SEARCHY

Every function can be declared as

/ type [-'a, +'b] t=‘a -> ‘b

(L IYRSPOLARITY SEARCHY

Every function can be declared as
type [-'a, +'b] t=‘a -> ‘b

/

a ¢ contravariont b ic covariant

(L TYRSPOLARITY SEARGHY

Every function can be declared as
type [-'a, +'b] t=‘a -> ‘b

/

a ¢ contravariont b ic covariant

(L TYRSPOLARITY SEARGHY

Aagqing variances allowe vs fo
define a very cmall distance
computation

Every function can be declared as
type [-'a, +'b] t=‘a -> ‘b

/

a ¢ contravariont b ic covariant
-string +int
+int —%loat

S L LUIPOLARITY SEARCHE
\\ minus for contravariant

plus for covariant ~= Alagging variances allowe vs fo
define a very cmall distance
computation

-string +option Every function can be declared as

no support for type (-’a, +'b) t=‘a->"‘b
parametric /
polymorp higm a i¢ contravariant b is covariant

| e 1WNYPOLARITY SEARCHY,

+int —%loat
-int -int +int

\\ minus for contravariant

/b/“g For covariant >~ f/aggiug variances allowe vs o
define a very cmall distance
computation

r Hard to vee but a proof that Merlin can fold definition

-string +option Every function can be declared as

no support for type (-’a, +'b) t=‘a->"‘b
parametric /
polymorp higm a i¢ contravariant b is covariant

| e 1WNYPOLARITY SEARCHY,

+int -float
-int -int +int

\\ minus for contravariant

/b/“g For covariant >~ f/aggiug variances allowe vs to
define a very cmall distance
computation

DURING ([

DURING [

clye

Type indexing in OCaml: search and find functions
in a large ecosystem
Gabriel RADANNE, Inria CASH/LIP
Laure Gonnord — Grenoble INP/LCIS & LIP/CASH
2021-2022

1 Context

Sometimes, we need a function so deeply that we have to go out and search for it. How do we find it ? Sometimes,
we have a precise idea of the desired type : “this function has at least 2 parameters, a bike and a date and returns
a boolean value”. We will then search at some precise places (the directory containing the Bike module, for

\IEITHE TIME

Cherlodoc

Dow:’:‘ng

‘ 'a list » ('a > 'b) = 'b list

Resultsfor : 'a list — ('a - 'b) — 'b list
ocaml
val Stdlib.List.map : ('a - 'b) - 'a list - 'b list
map f [al; ...; an] applies function ftoal, ..., an,andbuildsthelist [f al; ...; f an] with the results returned by f.
ocaml
val Stdlib.List.rev_map : ('a —» 'b) — 'a list - 'b list
rev_map f 1 givesthe sameresultasrev (map f 1), butis more efficient.
ocaml
val Stdlib.ListLabels.map : f:('a - 'b) — 'a list — 'b list

map ~f [al; ...; an] appliesfunction ftoal, ..., an,andbuildsthelist [f al; ...; f an] withthe results returned by f.

clye

Type indexing in OCaml: search and find functions
in a large ecosystem
Gabriel RADANNE, Inria CASH/LIP
Laure Gonnord — Grenoble INP/LCIS & LIP/CASH
2021-2022

1 Context

Sometimes, we need a function so deeply that we have to go out and search for it. How do we find it ? Sometimes,
we have a precise idea of the desired type : “this function has at least 2 parameters, a bike and a date and returns
a boolean value”. We will then search at some precise places (the directory containing the Bike module, for

\IEITHE TIME

Cherlodoc

Perform real unification,
extreme/y precice

Dow:’:‘ng

‘ 'a list » ('a > 'b) = 'b list

Resultsfor : 'a list — ('a - 'b) — 'b list
ocaml
val Stdlib.List.map : ('a - 'b) - 'a list - 'b list
map f [al; ...; an] applies function ftoal, ..., an,andbuildsthelist [f al; ...; f an] with the results returned by f.
ocaml
val Stdlib.List.rev_map : ('a —» 'b) — 'a list - 'b list
rev_map f 1 givesthe sameresultasrev (map f 1), butis more efficient.
ocaml
val Stdlib.ListLabels.map : f:('a - 'b) — 'a list — 'b list

map ~f [al; ...; an] appliesfunction ftoal, ..., an,andbuildsthelist [f al; ...; f an] withthe results returned by f.

clye

Type indexing in OCaml: search and find functions
in a large ecosystem
Gabriel RADANNE, Inria CASH/LIP
Laure Gonnord — Grenoble INP/LCIS & LIP/CASH
2021-2022

1 Context

Sometimes, we need a function so deeply that we have to go out and search for it. How do we find it ? Sometimes,
we have a precise idea of the desired type : “this function has at least 2 parameters, a bike and a date and returns
a boolean value”. We will then search at some precise places (the directory containing the Bike module, for

Compute cyntactic score

b

etween type scignatures

Cherlodoc

\IEITHE TIME

Perform real unification,
extreme/y precice

Dow:’:‘ng

‘ 'a list » ('a > 'b) = 'b list

Resultsfor : 'a list — ('a - 'b) — 'b list
ocaml
val Stdlib.List.map : ('a - 'b) - 'a list - 'b list
map f [al; ...; an] applies function ftoal, ..., an,andbuildsthelist [f al; ...; f an] with the results returned by f.
ocaml

val

val

Stdlib.List.rev_map : ('a —» 'b) — 'a list - 'b list

rev_map f 1 givesthe sameresultasrev (map f 1), butis more efficient.

ocaml

Stdlib.ListLabels.map : f:('a - 'b) — 'a list — 'b list

map ~f [al; ...; an] appliesfunction ftoal, ..., an,andbuildsthelist [f al; ...; f an] withthe results returned by f.

clye

Type indexing in OCaml: search and find functions
in a large ecosystem
Gabriel RADANNE, Inria CASH/LIP
Laure Gonnord — Grenoble INP/LCIS & LIP/CASH
2021-2022

1 Context

Sometimes, we need a function so deeply that we have to go out and search for it. How do we find it ? Sometimes,
we have a precise idea of the desired type : “this function has at least 2 parameters, a bike and a date and returns
a boolean value”. We will then search at some precise places (the directory containing the Bike module, for

eacier to integrate (and maybe more efficient for
discoveries, rather than finding the perfect-fit
Function)

Compute cyntactic score Perform real unification,

between type signatures URING I extremely precice

Cherlsdoc Dow:’:‘ng

‘ 'a list » ('a = 'b) = 'b list

O(I;O
Resultsfor : 'a list — ('a - 'b) — 'b list

ocaml

val Stdlib.List.map : (‘a —» °b) - 'a list = b list Type indexing in OCaml: search and find functions

map f [al; ...; an] appliesfunction ftoal, ..., an, andbuildsthelist[f al; ...; f an] with the results returned by f. ina |arge ecosystem
ocaml Gabriel RADANNE, Inria CASH/LIP

val Stdlib.List.rev_map : ('a —» 'b) — 'a list - 'b list Laure Gonnord — Grenoble INP/LCIS & LIP/CASH
rev_map f 1 givesthe sameresultasrev (map f 1), butis more efficient. 2021-2022

ocaml

s : ' ' ' : i . 1 Context
val Stdlib.ListLabels.map : f:('a - 'b) — 'a list — 'b list
Sometimes, we need a function so deeply that we have to go out and search for it. How do we find it ? Sometimes,

b . . H i i i 5 . i we have a precise idea of the desired type : “this function has at least 2 parameters, a bike and a date and returns
map ~f [al; ...; an] appliesfunction ftoal, ..., an,andbuildsthelist [f al; ...; f an] withthe results returned by f. a boolean value”. We will then search at some precise places (the directory containing the Bike module, for

becavce the complicated part ic about indexation the
Full OComl lict of available packages

eacier to integrate (and maybe more efficient for
discoveries, rather than finding the perfect-fit

/ Function)

Compute cyntactic score

Perform real unification,
between type signatures

exf/’eme/y precice

DURING |1}

Cherlsdoc Dow:’:‘ng

‘ 'a list » ('a = 'b) = 'b list

Resultsfor : 'a list — ('a - 'b) — 'b list

ol

ocaml

val Stdlib.List.map : ('a — 'b) - 'a list - 'b list Type indexing in OCaml: search and find functions

map f [al; ... in a large ecosystem

; an] applies function f toal, ..., an,andbuildsthelist [f al; ...; f an] with the results returned by f.

val

val

ocaml

Stdlib.List.rev_map : ('a —» 'b) — 'a list - 'b list

rev_map f 1 givesthe sameresultasrev (map f 1), butis more efficient.

ocaml

Stdlib.ListLabels.map : f:('a —» 'b) —» 'a list —» 'b list

map ~f [al; ...; an] appliesfunction f toal, ...

, an,and builds the list [f al; ...

; T an] with the results returned by f.

Gabriel RADANNE, Inria CASH/LIP
Laure Gonnord — Grenoble INP/LCIS & LIP/CASH

2021-2022

1 Context

Sometimes, we need a function so deeply that we have to go out and search for it. How do we find it ? Sometimes,
we have a precise idea of the desired type : “this function has at least 2 parameters, a bike and a date and returns
a boolean value”. We will then search at some precise places (the directory containing the Bike module, for

SHERLODOC INTEGRATION INSIDE
MERLIN

withouvt indexation lbarz‘
/ and more precice Type parameters reprecentation

SHERLODOC INTEGRATION INSIDE
MERLIN

withouvt indexation lbarf
/ and more precice Type parameters reprecentation

SHERLODOC INTEGRATION INSIDE
MERLIN

We give a standard representation for a query and OCaml types
We normalize parameters types (making ‘a -> ‘b isomorphic to ‘c -> ‘d)
We create a list of path and computing distances with specific
heuristics to every “cases” (ie, Damareau levensthein distance for
Type constructors, and relaxed distance betweena*b->canda->b
-> ¢, to capture more isomorphism)

We use a stable-marriage algorithm on the matrix (for input
parameters) to find the best-scored path

And we have a score !

withouvt indexation lbarf
/ and more precice Type parameters reprecentation

SHERLODOC INTEGRATION INSIDE
MERLIN J

We give a standard representation for a query and OCaml types
We normalize parameters types (making ‘a -> ‘b isomorphic to ‘c -> ‘d)
We create a list of path and computing distances with specific
heuristics to every “cases” (ie, Damareau levensthein distance for
Type constructors, and relaxed distance betweena*b->canda->b
-> ¢, to capture more isomorphism)

We use a stable-marriage algorithm on the matrix (for input
parameters) to find the best-scored path

And we have a score ! Ahd Adalfhy sgome DX 7‘00/
T (constructible, doc etc)

Future improvement:

- Better heuristics for tycon

- Support for modules, objects, labelled
arguments and polymorphic variant
(modulo isomorphism)

- Taking account of user-feedback

| ™M ex.ml 1:0 All LF UTF-8 Tuareg
Quit

[LUJCONGLUDEL

Working with I, DE ic fun!

Il (1]CONCLUDEL

Working with IDE ic Fun!

Il (1]CONCLUDEL

~— (SP i¢ a g00d default
but ctill need work at the client level

Working with IDE ic Fun!

Il (1]CONCLUDEL

~— (SP i¢ a g00d default
but ctill need work at the client level

We definitely chovld make iscues on /SCode and (SP /

to relax some part of the profocol

We are working on
- Improve performances

- Maintenance and /m,bravement
Working with IDE i¢ fun! - (SP canonical client forl/im

Il (]CONCLUDEL

~— (SP i¢ a goo0d default
but ctill need work at the client level

We definitely chovld make iscues on /SCode and (SP /

to relax some part of the profocol

Very open to contribution,

feedbacks and ,QEX\

We are working on
- Improve performances
- /Mm'hteumace and /m,bmvement

Working with IDE i¢ fun! - (SP cancnical client forl/im

Il (]CONCLUDEL

~— (SP i¢ a goo0d default
but ctill need work at the client level

We definitely chovld make iscues on /SCode and (SP /

to relax some part of the profocol

Very open to contribution,

feedbacks and ,QE)(\
Dreams: refactoring engine based on L
beta-reduction and more interactive \ We are wor thg oh

featurec - Improve performances
- Maintenance and improvement

Working with IDE ic fun! - (SP canonical client forl/im

I (1]CONCLUDEL

~— (SP i¢ a goo0d default
but ctill need work at the client level

We definitely chovld make iscues on /SCode and (SP /

to relax some part of the profocol

Very open to contribution,

feedbacks and ,QEX\
Dreams: refactoring engine based on L
beta-reduction and more interactive \ We are wor thg oh

featurec - Improve performances

. ‘ . - Maintenance and improvement
Working with IDE ic fun! - (SP canonical client forl/im

I (1]CONCLUDEL

Upstreaming come part of ’
/hbek/fn /‘m'/c/ge the OPC/,W,/ T— (SP i¢ a g00d default

but <till need work at the client level

We definitely chovld make iscues on /SCode and (SP /

to relax some part of the profocol

C ompf/ek

I/{/e Aave an intern to éaotffkap I.f./ Very albe,,‘ to Ca"ltkl.éatl.oh,

feedbacks and ,QEX\
Dreams: refactoring engine based on L
beta-reduction and more interactive \ We are wor thg oh

featurec - Improve performances
- Maintenance and improvement

Working with IDE ic fun! - (SP canonical client forl/im

I (1]CONCLUDEL

Upstreaming come part of ’
/hbek/fn /‘m'/c/ge the OPC/,W,/ T— (SP i¢ a g00d default

but <till need work at the client level

We definitely chovld make iscues on /SCode and (SP /

to relax some part of the profocol

C ompf/ek

I/{/e Aave an intern to éaotr?‘kﬁp I.f./ Veky albe,,‘ ta Ca"ltkl.éatl.oh,

’ feadbscks and REX~

Dreams: refactoring engine based on L
beta-reduction and more interactive \ W € are Working on

featurec - Improve performances
- Maintenance and improvement

Working with IDE ie Fun! - (SP canonical client forl/im
?eé?tﬁdagter /Dratoco/7 TU GUNBLUDE
Upstreaming some part of N\ ,
Merlin ingide the OCaml L3P is a good default

but <till need work at the client level

We definitely chovld make iscues on /SCode and (SP /

to relax some part of the profocol

C ompf/e/'

/ Questione ?
BEYOND THE BASICS OF |y

ADVANGED IDE SERVIGES
FOR ALY

Xavier Van de Woestyne - @vdwx

