
Beyond the basics of LSP
Advanced IDE Services

For OCaml
Xavier Van de Woestyne - @vdwxv - xvw.lol

Beyond the basics of LSP
Advanced IDE Services

For OCaml
Xavier Van de Woestyne - @vdwxv - xvw.lol

Tarides: Making Critical Systems Better
We help developers and companies build robust,

secure, high-performance applications whilst
maintaining crucial reliability.

Beyond the basics of LSP
Advanced IDE Services

For OCaml
Xavier Van de Woestyne - @vdwxv - xvw.lol

Tarides: Making Critical Systems Better
We help developers and companies build robust,

secure, high-performance applications whilst
maintaining crucial reliability.

And
more
…

compiler
ecosystem
platform/tooling

Beyond the basics of LSP
Advanced IDE Services

For OCaml
Xavier Van de Woestyne - @vdwxv - xvw.lol

Tarides: Making Critical Systems Better
We help developers and companies build robust,

secure, high-performance applications whilst
maintaining crucial reliability.

Working in
the Editor Team (on IDE)

And
more
…

compiler
ecosystem
platform/tooling

Beyond the basics of LSP
Advanced IDE Services

For OCaml
Xavier Van de Woestyne - @vdwxv - xvw.lol

An adventure of Merlin and OCaml-LSP-Server

Tarides: Making Critical Systems Better
We help developers and companies build robust,

secure, high-performance applications whilst
maintaining crucial reliability.

Working in
the Editor Team (on IDE)

And
more
…

compiler
ecosystem
platform/tooling

Beyond the basics of LSP
Advanced IDE Services

For OCaml
Xavier Van de Woestyne - @vdwxv - xvw.lol

An adventure of Merlin and OCaml-LSP-Server

Tarides: Making Critical Systems Better
We help developers and companies build robust,

secure, high-performance applications whilst
maintaining crucial reliability.

Working in
the Editor Team (on IDE)

And
more
…

compiler
ecosystem
platform/tooling

An ML language, a strict
Functional, Imperative, with a
powerful type system (ADTs,
GADTs and row polymorphism),
Type inference, Advanced module
system, OOP with structural
subtyping and user defined
effect (as core language feature)

Beyond the basics of LSP
Advanced IDE Services

For OCaml
Xavier Van de Woestyne - @vdwxv - xvw.lol

An adventure of Merlin and OCaml-LSP-Server

Tarides: Making Critical Systems Better
We help developers and companies build robust,

secure, high-performance applications whilst
maintaining crucial reliability.

Working in
the Editor Team (on IDE)

And
more
…

compiler
ecosystem
platform/tooling

An ML language, a strict
Functional, Imperative, with a
powerful type system (ADTs,
GADTs and row polymorphism),
Type inference, Advanced module
system, OOP with structural
subtyping and user defined
effect (as core language feature)

sorry for the bazar with my slides,
they're displaying my speaker notes!��

PLAN

What is a
Language Server
A very naive editor Timeline

About Merlin
Basics workflow

and features

About Lsp
Capabilities/Features and

migration strategy

Implementation
details about Some

Advanced
Features

Including a proof that Lambda Calculus
can be concretely used as a functional

programmer

Pro/Cons Lsp
and about VSCode integration

Conclusion and
future work

PLAN

What is a
Language Server
A very naive editor Timeline

About Merlin
Basics workflow

and features

About Lsp
Capabilities/Features and

migration strategy

Implementation
details about Some

Advanced
Features

Including a proof that Lambda Calculus
can be concretely used as a functional

programmer

Pro/Cons Lsp
and about VSCode integration

Conclusion and
future work

But first, why?
Discussions with other
functional programming
language users about their IDEs
and their expectations, and also
present our work :)

And maybe find how to solve some
issues with you

What a good IDE
should bring

What a good IDE
should bring

Good support for
code editing

(hilighting/folding)

What a good IDE
should bring

Good support for
code editing

(hilighting/folding)

Improve productivity
(completions/tools/refactoring)

What a good IDE
should bring

Good support for
code editing

(hilighting/folding)

Improve productivity
(completions/tools/refactoring)

Smart and quick
feedbacks

(diagnosis, hints)

What a good IDE
should bring

Good support for
code editing

(hilighting/folding)

Improve productivity
(completions/tools/refactoring)

Smart and quick
feedbacks

(diagnosis, hints)

Tools orchestration
and project
management

What a good IDE
should bring

Good support for
code editing

(hilighting/folding)

Improve productivity
(completions/tools/refactoring)

Smart and quick
feedbacks

(diagnosis, hints)

Tools orchestration
and project
management Project discovery

(Code Navigation)

What a good IDE
should bring

Good support for
code editing

(hilighting/folding)

Improve productivity
(completions/tools/refactoring)

Smart and quick
feedbacks

(diagnosis, hints)

Tools orchestration
and project
management Project discovery

(Code Navigation)

Return valid
information and

mutations

Naive editor
timeline

Naive editor
timelineACME

Configurable
TextBased
Editors

Naive editor
timelineACME

Configurable
TextBased
Editors

Fully specialized
IDE

Naive editor
timelineACME

Configurable
TextBased
Editors

Fully specialized
IDE

Abstraction
over Syntax

Naive editor
timelineACME

Configurable
TextBased
Editors

Fully specialized
IDE

Abstraction
over Syntax

Naive editor
timelineACME

LSP

TreeSitter

Configurable
TextBased
Editors

Fully specialized
IDE

Abstraction
over Syntax

Generalization
of the Protocol

Naive editor
timelineACME

LSP

TreeSitter

Configurable
TextBased
Editors

Fully specialized
IDE

Abstraction
over Syntax

Generalization
of the Protocol

Naive editor
timelineACME

LSP

TreeSitter

Configurable
TextBased
Editors

Fully specialized
IDE

Abstraction
over Syntax

Generalization
of the Protocol

Naive editor
timelineACME

LSP

TreeSitter

Configurable
TextBased
Editors

Fully specialized
IDE

Abstraction
over Syntax

Generalization
of the Protocol

2016

Naive editor
timelineACME

LSP

TreeSitter

Configurable
TextBased
Editors

Fully specialized
IDE

Abstraction
over Syntax

Generalization
of the Protocol

2016

Merlin
2013
before LSP

So what is a
language server?

So what is a
language server?

A daemon that receives text buffer
and user queries

Global
Architecture

Documented in

EditorRequest

reply

buffer

Build SystemCompiler

Disk
(Build artifacts)

ClientLangage
server

EditorRequest

reply

buffer

Build SystemCompiler

Disk
(Build artifacts)

ClientLangage
server

Include an
Incremental and Partial

language frontend
(Parser+ Typechecker)

EditorRequest

reply

buffer

Build SystemCompiler

Disk
(Build artifacts)

ClientLangage
server

Include an
Incremental and Partial

language frontend
(Parser+ Typechecker)

only recomputed changed part

deal with missing or wrong part

EditorRequest

reply

buffer

Build SystemCompiler

Disk
(Build artifacts)

ClientLangage
server

vendoring and adapting the existing OCaml toolchain
- making everything pure or backtrackable
- pure lexer
- pure parser
- parsing error recovery (faking data when it is missing)
- typechecking already has backtracking

EditorRequest

reply

buffer

Build SystemCompiler

Disk
(Build artifacts)

ClientLangage
server

vendoring and adapting the existing OCaml toolchain
- making everything pure or backtrackable
- pure lexer
- pure parser
- parsing error recovery (faking data when it is missing)
- typechecking already has backtracking

purity unlock memoization for
incrementality

EditorRequest

reply

buffer

Build SystemCompiler

Disk
(Build artifacts)

ClientLangage
server

vendoring and adapting the existing OCaml toolchain
- making everything pure or backtrackable
- pure lexer
- pure parser
- parsing error recovery (faking data when it is missing)
- typechecking already has backtracking

purity unlock memoization for
incrementality

The paper also describes cool
applications of static information
about grammar (error recovery,

error messages, multi grammar,
local GLR parser emulation)

EditorRequest

reply

buffer

Build SystemCompiler

Disk
(Build artifacts)

ClientLangage
server

But here we have
a bottleneck

EditorRequest

reply

buffer

Build SystemCompiler

Disk
(Build artifacts)

ClientLangage
server

But here we have
a bottleneck

EditorRequest

reply

buffer

Build SystemCompiler

Disk
(Build artifacts)

ClientLangage
server

But here we have
a bottleneck

this is why LSP
since a lot of editors are

shipped with an LSP Client

EditorRequest

reply

buffer

Build SystemCompiler

Disk
(Build artifacts)

Langage server
protocol
implementation

LSP
client

But LSP is not a perfect fit. It
gives better default

ACME

Hard to extend
Complicated

protocol

Syntax Highlighting
and code folding by

default

easy to extend
Syntax highlighting

by default

ACME

Hard to extend
Complicated

protocol

Syntax Highlighting
and code folding by

default

easy to extend
Syntax highlighting

by default

LSP
Syntax Highlighting, auto-complete, jump-to-definition,
hints and hovers, project manipulation, advanced search
(and a proper parallel client/server + capabilities notion)
and more feature but that assumes class-based and statement based languages.

An huge migration
from Merlin
Server to lsp

Let's observe some feature that diverges from
the ones supported out of the box

An huge migration
from Merlin
Server to lsp

Let's observe some feature that diverges from
the ones supported out of the box

via Code Action
Contextual triggerable action
on the document

via Custom Request
Lets the client implementing the reaction

An huge migration
from Merlin
Server to lsp

Let's observe some feature that diverges from
the ones supported out of the box

via Code Action
Contextual triggerable action
on the document

via Custom Request
Lets the client implementing the reaction

that need
SPECIFIC

IMPLEMENTATION
The comeback of our potential Bottleneck

Types and
documentation

Types and
documentation

Types and
documentation

Available via an Hover Prodiver
and Inlay Hints

Case analysis
and construct expression

Case analysis
and construct expression

Case analysis
and construct expression

Case analysis
and construct expression

Available via Code Action and Completion

OPEN REFACTORING

OPEN REFACTORING

OPEN REFACTORING

Available via a Code Action

Source Navigation

Source Navigation

- Jump to the prev or next phrase
(toplevel-definition)

- Switch from implementation to
interface and vice-versa

- Jump to fun/let/module/match

Source Navigation

- Jump to the prev or next phrase
(toplevel-definition)

- Switch from implementation to
interface and vice-versa

- Jump to fun/let/module/match

Available via a Code Action

Available via a Code Action

Available via a Code Action

Source Navigation

- Jump to the prev or next phrase
(toplevel-definition)

- Switch from implementation to
interface and vice-versa

- Jump to fun/let/module/match

Available via a Code Action

Available via a Code Action

Available via a Code Action

BUT

Highly pollutes the ‘code-action' menu

No nesting/grouping in the
protocol!

Source Navigation

- Jump to the prev or next phrase
(toplevel-definition)

- Switch from implementation to
interface and vice-versa

- Jump to fun/let/module/match

Available via a Code Action

Available via a Code Action

Available via a Code Action

BUT

Highly pollutes the ‘code-action' menu

No nesting/grouping in the
protocol!

Moving to a Custom Request��

outlines and
code structure

outlines and
code structure

Works well for outlines
but not for document
navigation

outlines and
code structure

Works well for outlines
but not for document
navigation

outlines and
code structure

Works well for outlines
but not for document
navigation

��Assumes that all languages
are TypeScript-like
(in Outline Kind)

type-enclosing

type-enclosing one of the main feature of
Merlin

type-enclosing one of the main feature of
Merlin

type t =

 { result : int

 ; job_done : bool

 }

let f x =

 let init_value = x + 1 in

 let z =

 Stdlib.List.fold_left

 (fun acc x -> acc + int_of_string x)

 init_value

 ["1"; "2"; "3"; "4"]

 in

 { result = z; job_done = true }

let result = f 10

type-enclosing one of the main feature of
Merlin

type t =

 { result : int

 ; job_done : bool

 }

let f x =

 let init_value = x + 1 in

 let z =

 Stdlib.List.fold_left

 (fun acc x -> acc + int_of_string x)

 init_value

 ["1"; "2"; "3"; "4"]

 in

 { result = z; job_done = true }

let result = f 10

The "result" has type t

type-enclosing one of the main feature of
Merlin

type t =

 { result : int

 ; job_done : bool

 }

let f x =

 let init_value = x + 1 in

 let z =

 Stdlib.List.fold_left

 (fun acc x -> acc + int_of_string x)

 init_value

 ["1"; "2"; "3"; "4"]

 in

 { result = z; job_done = true }

let result = f 10

The "result" has type t

but outside of the module
it hard to guess what is

really t

type-enclosing one of the main feature of
Merlin

type t =

 { result : int

 ; job_done : bool

 }

let f x =

 let init_value = x + 1 in

 let z =

 Stdlib.List.fold_left

 (fun acc x -> acc + int_of_string x)

 init_value

 ["1"; "2"; "3"; "4"]

 in

 { result = z; job_done = true }

let result = f 10

The "result" has type t

but outside of the module
it hard to guess what is

really t

so we want to increase the verbosity (in Emacs +
Merlin we can re-call the feature to get the

following definition)

type-enclosing one of the main feature of
Merlin

type t =

 { result : int

 ; job_done : bool

 }

let f x =

 let init_value = x + 1 in

 let z =

 Stdlib.List.fold_left

 (fun acc x -> acc + int_of_string x)

 init_value

 ["1"; "2"; "3"; "4"]

 in

 { result = z; job_done = true }

let result = f 10

An other useful feature is to
grow and shrink the
observable enclosing.

type-enclosing one of the main feature of
Merlin

type t =

 { result : int

 ; job_done : bool

 }

let f x =

 let init_value = x + 1 in

 let z =

 Stdlib.List.fold_left

 (fun acc x -> acc + int_of_string x)

 init_value

 ["1"; "2"; "3"; "4"]

 in

 { result = z; job_done = true }

let result = f 10

An other useful feature is to
grow and shrink the
observable enclosing.

('acc -> 'b -> 'acc) -> 'acc -> 'b list -> 'acc

type-enclosing one of the main feature of
Merlin

type t =

 { result : int

 ; job_done : bool

 }

let f x =

 let init_value = x + 1 in

 let z =

 Stdlib.List.fold_left

 (fun acc x -> acc + int_of_string x)

 init_value

 ["1"; "2"; "3"; "4"]

 in

 { result = z; job_done = true }

let result = f 10

An other useful feature is to
grow and shrink the
observable enclosing.

(int -> string -> int) -> int -> string list -> int

type-enclosing one of the main feature of
Merlin

type t =

 { result : int

 ; job_done : bool

 }

let f x =

 let init_value = x + 1 in

 let z =

 Stdlib.List.fold_left

 (fun acc x -> acc + int_of_string x)

 init_value

 ["1"; "2"; "3"; "4"]

 in

 { result = z; job_done = true }

let result = f 10

An other useful feature is to
grow and shrink the
observable enclosing.

int

type-enclosing one of the main feature of
Merlin

type t =

 { result : int

 ; job_done : bool

 }

let f x =

 let init_value = x + 1 in

 let z =

 Stdlib.List.fold_left

 (fun acc x -> acc + int_of_string x)

 init_value

 ["1"; "2"; "3"; "4"]

 in

 { result = z; job_done = true }

let result = f 10

An other useful feature is to
grow and shrink the
observable enclosing.

t : { result: int; job_done: bool }

type-enclosing one of the main feature of
Merlin

type t =

 { result : int

 ; job_done : bool

 }

let f x =

 let init_value = x + 1 in

 let z =

 Stdlib.List.fold_left

 (fun acc x -> acc + int_of_string x)

 init_value

 ["1"; "2"; "3"; "4"]

 in

 { result = z; job_done = true }

let result = f 10

An other useful feature is to
grow and shrink the
observable enclosing.

t : { result: int; job_done: bool }

type-enclosing one of the main feature of
Merlin

type t =

 { result : int

 ; job_done : bool

 }

let f x =

 let init_value = x + 1 in

 let z =

 Stdlib.List.fold_left

 (fun acc x -> acc + int_of_string x)

 init_value

 ["1"; "2"; "3"; "4"]

 in

 { result = z; job_done = true }

let result = f 10

An other useful feature is to
grow and shrink the
observable enclosing.

int -> t

type-enclosing one of the main feature of
Merlin

type t =

 { result : int

 ; job_done : bool

 }

let f x =

 let init_value = x + 1 in

 let z =

 Stdlib.List.fold_left

 (fun acc x -> acc + int_of_string x)

 init_value

 ["1"; "2"; "3"; "4"]

 in

 { result = z; job_done = true }

let result = f 10

type-enclosing one of the main feature of
Merlin

Custom Request +
Stateful management on

the client-side

type-enclosing one of the main feature of
Merlin

Can't really hook the Hover
Provider

Custom Request +
Stateful management on

the client-side

LSP makes a lot of
things simpler

LSP makes a lot of
things simpler

but we still need dedicated clients to
handle custom requests

LSP makes a lot of
things simpler

but we still need dedicated clients to
handle custom requests

Implementation of every dedicated requests
on LSP side + a tunneling request
for client independence. Already used by NeoVim

LSP makes a lot of
things simpler

but we still need dedicated clients to
handle custom requests

Implementation of every dedicated requests
on LSP side + a tunneling request
for client independence. Already used by NeoVim

Start providing canonical implementation for Vim, Emacs and VSCode

LSP makes a lot of
things simpler

but we still need dedicated clients to
handle custom requests

Implementation of every dedicated requests
on LSP side + a tunneling request
for client independence. Already used by NeoVim

Start providing canonical implementation for Vim, Emacs and VSCode

the UI of VSCode is surprisingly hard
to extend properly.

LSP makes a lot of
things simpler

but we still need dedicated clients to
handle custom requests

Implementation of every dedicated requests
on LSP side + a tunneling request
for client independence. Already used by NeoVim

Start providing canonical implementation for Vim, Emacs and VSCode

the UI of VSCode is surprisingly hard
to extend properly.

recentlu released!
OCaml-eglot

Implementation
details

Where the fun begins

Project-Wide
Occurrences

Project-Wide
Occurrences

return every usage of the selected identifier
across all of the project's source files

Project-Wide
Occurrences

return every usage of the selected identifier
across all of the project's source files

Hard to achieve in presence of
powerful module system and
separate compilation

Project-Wide
Occurrences

return every usage of the selected identifier
across all of the project's source files

Hard to achieve in presence of
powerful module system and
separate compilation

OCaml’s module system supports aliases, includes,
and (higher-order) functors.

All of these make
finding any definition more complicated

module type S = sig

 val x : int

end

module Identity (X : S) : S = X

module Simple = struct

 let x = 3

 let y = true

end

module Apply (Id : functor (_ : S) -> S)

 (X : S) = struct

 include Id (X)

end

module Alias = Simple

module M = Apply (Identity) (Alias)

let y = M.x

Example
Let's find the definition of M.x

module type S = sig

 val x : int

end

module Identity (X : S) : S = X

module Simple = struct

 let x = 3

 let y = true

end

module Apply (Id : functor (_ : S) -> S)

 (X : S) = struct

 include Id (X)

end

module Alias = Simple

module M = Apply (Identity) (Alias)

let y = M.x

Example
Let's find the definition of M.x

● M is the result of applying Apply

module type S = sig

 val x : int

end

module Identity (X : S) : S = X

module Simple = struct

 let x = 3

 let y = true

end

module Apply (Id : functor (_ : S) -> S)

 (X : S) = struct

 include Id (X)

end

module Alias = Simple

module M = Apply (Identity) (Alias)

let y = M.x

Example
Let's find the definition of M.x

● M is the result of applying Apply
● Look up of the Apply functor

module type S = sig

 val x : int

end

module Identity (X : S) : S = X

module Simple = struct

 let x = 3

 let y = true

end

module Apply (Id : functor (_ : S) -> S)

 (X : S) = struct

 include Id (X)

end

module Alias = Simple

module M = Apply (Identity) (Alias)

let y = M.x

Example
Let's find the definition of M.x

● M is the result of applying Apply
● Look up of the Apply functor
● x Come frome the application of Id

module type S = sig

 val x : int

end

module Identity (X : S) : S = X

module Simple = struct

 let x = 3

 let y = true

end

module Apply (Id : functor (_ : S) -> S)

 (X : S) = struct

 include Id (X)

end

module Alias = Simple

module M = Apply (Identity) (Alias)

let y = M.x

Example
Let's find the definition of M.x

● M is the result of applying Apply
● Look up of the Apply functor
● x Come frome the application of Id
● Id is a parameter

module type S = sig

 val x : int

end

module Identity (X : S) : S = X

module Simple = struct

 let x = 3

 let y = true

end

module Apply (Id : functor (_ : S) -> S)

 (X : S) = struct

 include Id (X)

end

module Alias = Simple

module M = Apply (Identity) (Alias)

let y = M.x

Example
Let's find the definition of M.x

● M is the result of applying Apply
● Look up of the Apply functor
● x Come frome the application of Id
● Id is a parameter
● Let's back to the application to inspect it

module type S = sig

 val x : int

end

module Identity (X : S) : S = X

module Simple = struct

 let x = 3

 let y = true

end

module Apply (Id : functor (_ : S) -> S)

 (X : S) = struct

 include Id (X)

end

module Alias = Simple

module M = Apply (Identity) (Alias)

let y = M.x

Example
Let's find the definition of M.x

● M is the result of applying Apply
● Look up of the Apply functor
● x Come frome the application of Id
● Id is a parameter
● Let's back to the application to inspect it
● The parameter is the functor Identity

module type S = sig

 val x : int

end

module Identity (X : S) : S = X

module Simple = struct

 let x = 3

 let y = true

end

module Apply (Id : functor (_ : S) -> S)

 (X : S) = struct

 include Id (X)

end

module Alias = Simple

module M = Apply (Identity) (Alias)

let y = M.x

Example
Let's find the definition of M.x

● M is the result of applying Apply
● Look up of the Apply functor
● x Come frome the application of Id
● Id is a parameter
● Let's back to the application to inspect it
● The parameter is the functor Identity
● x come from the X argument of the functor

module type S = sig

 val x : int

end

module Identity (X : S) : S = X

module Simple = struct

 let x = 3

 let y = true

end

module Apply (Id : functor (_ : S) -> S)

 (X : S) = struct

 include Id (X)

end

module Alias = Simple

module M = Apply (Identity) (Alias)

let y = M.x

Example
Let's find the definition of M.x

● M is the result of applying Apply
● Look up of the Apply functor
● x Come frome the application of Id
● Id is a parameter
● Let's back to the application to inspect it
● The parameter is the functor Identity
● x come from the X argument of the functor
● Let's back to the application to inspect the

second parameter

module type S = sig

 val x : int

end

module Identity (X : S) : S = X

module Simple = struct

 let x = 3

 let y = true

end

module Apply (Id : functor (_ : S) -> S)

 (X : S) = struct

 include Id (X)

end

module Alias = Simple

module M = Apply (Identity) (Alias)

let y = M.x

Example
Let's find the definition of M.x

● M is the result of applying Apply
● Look up of the Apply functor
● x Come frome the application of Id
● Id is a parameter
● Let's back to the application to inspect it
● The parameter is the functor Identity
● x come from the X argument of the functor
● Let's back to the application to inspect the

second parameter
● It is the Alias module

module type S = sig

 val x : int

end

module Identity (X : S) : S = X

module Simple = struct

 let x = 3

 let y = true

end

module Apply (Id : functor (_ : S) -> S)

 (X : S) = struct

 include Id (X)

end

module Alias = Simple

module M = Apply (Identity) (Alias)

let y = M.x

Example
Let's find the definition of M.x

● M is the result of applying Apply
● Look up of the Apply functor
● x Come frome the application of Id
● Id is a parameter
● Let's back to the application to inspect it
● The parameter is the functor Identity
● x come from the X argument of the functor
● Let's back to the application to inspect the

second parameter
● It is the Alias module
● Which is an alias (hehe) for Simple

module type S = sig

 val x : int

end

module Identity (X : S) : S = X

module Simple = struct

 let x = 3

 let y = true

end

module Apply (Id : functor (_ : S) -> S)

 (X : S) = struct

 include Id (X)

end

module Alias = Simple

module M = Apply (Identity) (Alias)

let y = M.x

Example
Let's find the definition of M.x

● M is the result of applying Apply
● Look up of the Apply functor
● x Come frome the application of Id
● Id is a parameter
● Let's back to the application to inspect it
● The parameter is the functor Identity
● x come from the X argument of the functor
● Let's back to the application to inspect the

second parameter
● It is the Alias module
● Which is an alias (hehe) for Simple
● We finally find our definition ��

module type S = sig

 val x : int

end

module Identity (X : S) : S = X

module Simple = struct

 let x = 3

 let y = true

end

module Apply (Id : functor (_ : S) -> S)

 (X : S) = struct

 include Id (X)

end

module Alias = Simple

module M = Apply (Identity) (Alias)

let y = M.x

Example
Let's find the definition of M.x

● M is the result of applying Apply
● Look up of the Apply functor
● x Come frome the application of Id
● Id is a parameter
● Let's back to the application to inspect it
● The parameter is the functor Identity
● x come from the X argument of the functor
● Let's back to the application to inspect the

second parameter
● It is the Alias module
● Which is an alias (hehe) for Simple
● We finally find our definition ��Shapes are a new build artifcact that store

that kind of path in the form of a small
typed lambda-calculus with products

associated with UID

type t = desc * source_loc

and item = string * namespace (* val, type, module... *)

and var = ident

and desc =

| Leaf

| Var of var

| Abs of var * t

| App of t * t

| Struct of (item, t) Map.t

| Proj of t * item

A simplified representation

type t = desc * source_loc

and item = string * namespace (* val, type, module... *)

and var = ident

and desc =

| Leaf

| Var of var

| Abs of var * t

| App of t * t

| Struct of (item, t) Map.t

| Proj of t * item

module M = Apply (Identity) (Alias)

A simplified representation

Representing our module M

type t = desc * source_loc

and item = string * namespace (* val, type, module... *)

and var = ident

and desc =

| Leaf

| Var of var

| Abs of var * t

| App of t * t

| Struct of (item, t) Map.t

| Proj of t * item

module M = Apply (Identity) (Alias)

App (

 App (

 Abs ("Id", Abs("X", App(Var "Id", Var "X"))), 7:0

 , Abs ("X", Var "X"), 3:0),

 Struct { ("x", value) -> Leaf, 5:23

 ("y", value) -> Leaf, 5:33 }), 11:0

A simplified representation

Representing our module M

type t = desc * source_loc

and item = string * namespace (* val, type, module... *)

and var = ident

and desc =

| Leaf

| Var of var

| Abs of var * t

| App of t * t

| Struct of (item, t) Map.t

| Proj of t * item

module M = Apply (Identity) (Alias)

App (

 App (

 Abs ("Id", Abs("X", App(Var "Id", Var "X"))), 7:0

 , Abs ("X", Var "X"), 3:0),

 Struct { ("x", value) -> Leaf, 5:23

 ("y", value) -> Leaf, 5:33 }), 11:0

A simplified representation

Representing our module M

 this calculus is implicitly typed
since its terms, which we call shapes, are derived from OCaml’s

module terms which are typed-checked by the compiler.

This implies that shapes have a normal form in this calculus
equipped with the usual reduction rules:

App(Abs(x, body), arg) 𝛽 > body[x ← arg]
Proj ((Struct 𝜑 , _), 𝑒) 𝜋 > 𝜑 (𝑒)

Reduction

Reduction

Tricky to solve in presence of
separate compilation

Reduction

Tricky to solve in presence of
separate compilation

Reduction

Tricky to solve in presence of
separate compilation

A very smart idea using Strong Call By Need Reduction
usually useful for proof assistant

Reduction

Tricky to solve in presence of
separate compilation

A very smart idea using Strong Call By Need Reduction
usually useful for proof assistant

Everything is more complicated in presence of a
sophisticated module language and separate

compilation

Reduction

Tricky to solve in presence of
separate compilation

A very smart idea using Strong Call By Need Reduction
usually useful for proof assistant

Everything is more complicated in presence of a
sophisticated module language and separate

compilation
Next step

Project Wide Renaming

Reduction

Tricky to solve in presence of
separate compilation

A very smart idea using Strong Call By Need Reduction
usually useful for proof assistant

Everything is more complicated in presence of a
sophisticated module language and separate

compilation
Next step

Project Wide Renaming

Available on last
version

SEARCH BY TYPES

SEARCH BY TYPES
Discoverving a new code base can
be complicated

SEARCH BY TYPES
Discoverving a new code base can
be complicated

understanding architecture

finding function and modules

SEARCH BY TYPES
Discoverving a new code base can
be complicated

understanding architecture

We can use:
find-occurences

jump to definition

finding function and modules

SEARCH BY TYPES
Discoverving a new code base can
be complicated

understanding architecture

We can use:
find-occurences

jump to definition

finding function and modules ocaml.org + manual

SEARCH BY TYPES
Discoverving a new code base can
be complicated

understanding architecture

We can use:
find-occurences

jump to definition

finding function and modules ocaml.org + manual

???

How to find function in an
existing codebase

How to find function in an
existing codebase

Finding by usage/example
like in Pharo

How to find function in an
existing codebase

Finding by usage/example
like in Pharo

Finding by types
like with Hoogle (Haskell)

How to find function in an
existing codebase

Finding by usage/example
like in Pharo

Finding by types
like with Hoogle (Haskell)

Hard to implement at the
editor level

How to find function in an
existing codebase

Finding by usage/example
like in Pharo

Finding by types
like with Hoogle (Haskell)

In Type we trust !!!
(and it is a very good specification tool)

Hard to implement at the
editor level

A very desired feature!
Since 2015

- ocaml-hoogle
- ocamlscope
- ocamlscope2
- ocp-index

and the not
well documented
search by polarity
in Merlin

What is polarity search?

What is polarity search?

Every function can be declared as
 type (-’a, +’b) t = ‘a -> ‘b

What is polarity search?

Every function can be declared as
 type (-’a, +’b) t = ‘a -> ‘b

b is covarianta is contravariant

What is polarity search?

Every function can be declared as
 type (-’a, +’b) t = ‘a -> ‘b

b is covarianta is contravariant

flagging variances allows us to
define a very small distance

computation

What is polarity search?

Every function can be declared as
 type (-’a, +’b) t = ‘a -> ‘b

b is covarianta is contravariant

flagging variances allows us to
define a very small distance

computation

minus for contravariant
plus for covariant

string -> int -string +int
float -> int +int -float
int -> int -> int -int -int +int

What is polarity search?

Every function can be declared as
 type (-’a, +’b) t = ‘a -> ‘b

b is covarianta is contravariant

flagging variances allows us to
define a very small distance

computation

minus for contravariant
plus for covariant

string -> int -string +int
float -> int +int -float
int -> int -> int -int -int +int

no support for
parametric
polymorphism
��
string -> int option -string +option

What is polarity search?

Every function can be declared as
 type (-’a, +’b) t = ‘a -> ‘b

b is covarianta is contravariant

flagging variances allows us to
define a very small distance

computation

minus for contravariant
plus for covariant

string -> int -string +int
float -> int +int -float
int -> int -> int -int -int +int

no support for
parametric
polymorphism
��
string -> int option -string +option

Hard to use but a proof that Merlin can fold definition

During the time

During the time

During the time
Sherlodoc Dowsing

During the time
Sherlodoc Dowsing

Perform real unification,
extremely precise

During the time
Sherlodoc Dowsing

Compute syntactic score
between type signatures

Perform real unification,
extremely precise

During the time
Sherlodoc Dowsing

Compute syntactic score
between type signatures

Perform real unification,
extremely precise

easier to integrate (and maybe more efficient for
discoveries, rather than finding the perfect-fit
function)

During the time
Sherlodoc Dowsing

Compute syntactic score
between type signatures

Perform real unification,
extremely precise

easier to integrate (and maybe more efficient for
discoveries, rather than finding the perfect-fit
function)

because the complicated part is about indexation the
full OCaml list of available packages

Sherlodoc integration inside
Merlin

Sherlodoc integration inside
Merlin

without indexation part
and more precise type parameters representation

Sherlodoc integration inside
Merlin

without indexation part
and more precise type parameters representation

● We give a standard representation for a query and OCaml types
● We normalize parameters types (making ‘a -> ‘b isomorphic to ‘c -> ‘d)
● We create a list of path and computing distances with specific

heuristics to every “cases” (ie, Damareau levensthein distance for
Type constructors, and relaxed distance between a * b -> c and a -> b
-> c, to capture more isomorphism)

● We use a stable-marriage algorithm on the matrix (for input
parameters) to find the best-scored path

● And we have a score !

Sherlodoc integration inside
Merlin

without indexation part
and more precise type parameters representation

● We give a standard representation for a query and OCaml types
● We normalize parameters types (making ‘a -> ‘b isomorphic to ‘c -> ‘d)
● We create a list of path and computing distances with specific

heuristics to every “cases” (ie, Damareau levensthein distance for
Type constructors, and relaxed distance between a * b -> c and a -> b
-> c, to capture more isomorphism)

● We use a stable-marriage algorithm on the matrix (for input
parameters) to find the best-scored path

● And we have a score ! And adding some DX tool
(constructible, doc etc)

future improvement:

- Better heuristics for tycon

- Support for modules, objects, labelled
arguments and polymorphic variant
(modulo isomorphism)

- Taking account of user-feedback

TO CONCLUDE!

TO CONCLUDE!
Working with IDE is fun!

TO CONCLUDE!
Working with IDE is fun!

LSP is a good default
but still need work at the client level

TO CONCLUDE!
Working with IDE is fun!

LSP is a good default
but still need work at the client level

We definitely should make issues on VSCode and LSP
to relax some part of the protocol

TO CONCLUDE!
Working with IDE is fun!

LSP is a good default
but still need work at the client level

We definitely should make issues on VSCode and LSP
to relax some part of the protocol

We are working on
- Improve performances
- Maintenance and improvement
- LSP canonical client forVim

TO CONCLUDE!
Working with IDE is fun!

LSP is a good default
but still need work at the client level

We definitely should make issues on VSCode and LSP
to relax some part of the protocol

We are working on
- Improve performances
- Maintenance and improvement
- LSP canonical client forVim

Very open to contribution,
feedbacks and REX

TO CONCLUDE!
Working with IDE is fun!

LSP is a good default
but still need work at the client level

We definitely should make issues on VSCode and LSP
to relax some part of the protocol

We are working on
- Improve performances
- Maintenance and improvement
- LSP canonical client forVim

Very open to contribution,
feedbacks and REX

Dreams: refactoring engine based on
beta-reduction and more interactive

features

TO CONCLUDE!
Working with IDE is fun!

LSP is a good default
but still need work at the client level

We definitely should make issues on VSCode and LSP
to relax some part of the protocol

We are working on
- Improve performances
- Maintenance and improvement
- LSP canonical client forVim

Very open to contribution,
feedbacks and REX

Dreams: refactoring engine based on
beta-reduction and more interactive

features

Upstreaming some part of
Merlin inside the OCaml
Compiler

TO CONCLUDE!
Working with IDE is fun!

LSP is a good default
but still need work at the client level

We definitely should make issues on VSCode and LSP
to relax some part of the protocol

We are working on
- Improve performances
- Maintenance and improvement
- LSP canonical client forVim

Very open to contribution,
feedbacks and REX

Dreams: refactoring engine based on
beta-reduction and more interactive

features

Upstreaming some part of
Merlin inside the OCaml
Compiler

We have an intern to bootstrap it!

TO CONCLUDE!
Working with IDE is fun!

LSP is a good default
but still need work at the client level

We definitely should make issues on VSCode and LSP
to relax some part of the protocol

We are working on
- Improve performances
- Maintenance and improvement
- LSP canonical client forVim

Very open to contribution,
feedbacks and REX

Dreams: refactoring engine based on
beta-reduction and more interactive

features

Upstreaming some part of
Merlin inside the OCaml
Compiler

We have an intern to bootstrap it!

Debug Adapter Protocol?
TreeSitter?

Beyond the basics of LSP
Advanced IDE Services

For OCaml
Xavier Van de Woestyne - @vdwxv - xvw.lol

Questions ?

