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Documented in

Merlin: A Language Server for OCaml (Experience Report)

FREDERIC BOUR
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GABRIEL SCHERER, INRIA, France

We report on the experience of developing Merlin, a language server for the OCaml programming language in
development since 2013. Merlin is a daemon that connects to your favourite text editor and provides services
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Syntax Hiﬁhlighting, auto-complete, jump-to-definition,
/ hints and hovers, project manipulation, advanced search
(and a proper parallel client/server + capabilities notion)

and more feature but that assumes class-based and statement based languages.

eacy fo extend
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3 list -> 'b list

y = Stdlib.List.map|

Available via an Hover Prodiver
and Inlay Hints
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type t =
{ result : int
; Job done : bool
}
let £ x =
let init value = x + 1 in
let z =
Stdlib.List.fold left
(fun acc x -> acc + int of string x)
init value
["ivy m2m; "3ty man ]
in
{ result = z; job done = true }

let result = £ 10
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in
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let result = £ 10
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result : int
; job_done : bool

let f x =
let init value = x + 1 in
let
Stdlib.List.fold_left
acc x » acc + int_of_string x
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type t =
result : int
; job_done : bool

let f
let init value = x + 1 in
let z =
Stdlib.List.fold_left
acc x » acc + int_of_string x
init_value
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in
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Cuctom Request +
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the UL of VSCode is curprisingly hard

to extend properly. \

Start providing eanonical implementation for l/im, Emacs and [/SCode

\ recentlv released!
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THINGS SIMPLER

but we ¢tifl need dedicated cliente to
| handle custom requests

Implementation of every dedicated requeste /
on (SP side + a tunneling request

for client independence. Already used by NeoVim
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return every veage of the selected identifier
acrose all of the projects source files
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/'/ard to achieve in presence of
/ powerful module cystem and
return every vseage 0{ the se/ecz‘ed identiﬁ’er geparate cgmp,‘/aﬁo“
acrose all of the projects source files

>~ PROJECT-WIDE
OCCURRENCES



Hard to achieve in presence 0/
powerful module cystem and

retury every vsage of the selected identifier ceparate cam'bi/aﬁon

acrose all of the projects source files

“~ PROJECT-WID
OCCURRENCE

Module Shapes for Modern Tooling

Ulysse Gérard, Thomas Refis, and Leo White

The ability to look up the definition of a variable is an es-
sential feature of modern programming tooling. Beyond the
simple code browsing action of jumping to that definition,
it is a preliminary for more advanced tasks like fetching
documentation or refactoring. The operation of finding a
definition requires deep knowledge of a language’s seman-
tics to prevent finding erroneous positions in the presence
of overlapping names, shadowed values, or complex features
like module systems with includes and functor applications.

While imprecise results are tolerable for an interactive

"jump to definition" use case, where the user can immediately

the source location of a declaration is therefore as simple as
a lookup in the typing environment.

When trying to find the location of a definition however,
there’s no help to be had from the compiler. So a natural
strategy that tools (e.g. merlin, rotor) can (and do) resort to
is to walk up the typed AST, looking for the definition. On
the example above, to find the definition of N.x we would
first look for the module N, and then inspect its structure to
find the definition of x.

We put an emphasis on walking “up”, because, due to
shadowing, the order in which the tree is visited matters.

- e i




OCaml's module system supports aliases, includes,
and (higher-order) functors.
All of these make
finding any definition more complicated



EXAMPLE

val x : int

end LET'S FIND THE DEFINITION OF

module Identity (X : S) : S = X
module Simple = struct
let x = 3

let y = true
end
module Apply (Id : functor ( : S) —-> S)
(X : S) = struct
include Id (X)

end

module Alias = Simple

module M = Apply (Identity) (Alias)

let y = M.x



EXAMPLE

val x : int

end LET'S FIND THE DEFINITION OF

? M is the result of applying Apply

module Identity (X : S) : S = X

module Simple = struct /
let x = 3 //
let y = true /

end

module Apply (Id : functor ( : S) —-> S) /

(X : S) = struct

include Td (X) /
end /

module Alias = Simple /
module = ( ) )

let y = M.x



EXAMPLE

val x : int

end LET'S FIND THE DEFINITION OF

e Mis the result of applying Apply

module Identity (X : S) : S =X - -~ Look up of the Apply functor
module Simple = struct __,ﬂ ‘—”
let x = 3 -
-
let y = true "——
end 4”’
-
module ( : functor ( : ) —> S)
(X = ) = struct
include (X)
end
module Alias = Simple

module M = Apply (Identity) (Alias)

let y = M.x



module type S = sig

val x : int

end

module Identity (X : S) : S = X

module Simple = struct
let x = 3 ""
let y = true /

end ,ﬂ"

module Apply (Id : functo/(i : 5) -> 9)
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(X ¢ S) = struct

include Id (X)

end

module Alias = Simple

module M = Apply (Identity) (Alias)

let y = M.x
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let y = M.x
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module Identity (X : S) : S = X
module Simple = struct
let x = 3
let y = true
end
module Apply (Id : functor ( : S) —-> S)

(X :+ S) = struct
include Id (X)

end

module Alias = Simple
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M is the result of applying Apply

Look up of the Apply functor

X Come frome the application of Id

Id is a parameter

Let's back to the application to inspect it
The parameter is the functor ldentity

X come from the X argument of the functor
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A SIMPLIFIED REPRESENTATION

type t = desc * source loc
and item = string * namespace (* val, type, module... *)
and var = ident
and desc =
Leaf

Var of wvar

App of t * t

|

|

| Abs of var * t
|

| Struct of (item, t) Map.t
|

Proj of t * item
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type t = desc * source loc
and item = string * namespace (* val, type, module... *)
and var = ident
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Var of var module M = Apply (Identity) (Alias)
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A SIMPLIFIED REPRESENTATION

type t = desc * source loc
and item = string * namespace (* val, type, module... *)
and var = ident
and desc =
Leaf REPRESENTING OUR MODULE M
Var of var module M = Apply (Identity) (Alias)

|
|
| Abs of var * t
|
|
|

App of t * t App (
Struct of (item, t) Map.t App (
Proj of t * item Abs ("Id", Abs("X", App(Var "Id", Var "X"))), 7:0

, Abs ("X", Var "X"), 3:0),
Struct { ("x", wvalue) -> Leaf, 5:23

this calculus is implicitly typed ("y", value) —-> Leaf, 5:33 }), 11:0
since its terms, which we call shapes, are derived from OCaml's
module terms which are typed-checked by the compiler.

This implies that shapes have a normal form in this calculus
equipped with the usual reduction rules:

App([Abs(x, body], arg] p > body[x « arg]
Proj ([ Struct ¢, _),e ) 7@ > ¢ (€]
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REDUCTION

An OCaml use case for strong call-by-need reduction

Gabriel Scherer (Partout, INRIA, France)
Nathanaélle Courant (Cambium, INRIA, France)

2022

Shapes

The compiler ar t produces build artifacts that include, in particular, the “typed tree” of each source file.

code analyz

This is a good representation to use for programming tools (IDEs, s, etc.), but it is sometimes

too complex. Consider the following OCaml program:

module Origin = struct let x = 1 end
module Second = struct let x = 2 let y = 2 end

module F(X) = struct

include X

include (Second : sig val y : int end)
end
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The compiler artifact produces build artifacts that include, in particular, the “typed tree” of each source file.
This is a good representation to use for programming tools (IDEs, code analyzers, etc.), but it is sometimes
too complex. Consider the following OCaml program:

module Origin = struct let x = 1 end
module Second = struct let x = 2 let y = 2 end

module F(X) = struct

include X

include (Second : sig val y : int end)
end
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Finder

'ocaml'. 'OCAML' Search M Reg Examples Packages... All Packages

» 'molac’ asUppercase -> 'MOLAC'

Browse Senders Implementors Versions Inheritance Hierarchy

Use an example to find a method in the system.

Ehdlh? éy agage/examP/e will find the message #, for strings concatenation

’k N PA 3 will find the message #negated
/’ e 'h ara . will find the message #factorial

will find the message #min:max:
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Ehdlh? éy ugage/examP/e will find the message #, for strings concatenation
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Finder

H&ll’d to I'm/b/emeht at 7¢l8 ‘ocaml'. 'OCAML' Search M Reg Examples Packages... All Packages
edl.tor /eve/ » 'molac’ asUppercase -> 'MOLAC'

Browse Senders Implementors Versions Inheritance Hierarchy

Use an example to find a method in the system.

Ehdlh? éy ugage/examP/e will find the message #, for strings concatenation

’k N PA : will find the message #negated
/’ e 'h ara will find the message #factorial

/ 6. 10. 15. will find the message sminimax:
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Finder

HAI’&{ to I'm/b/emeht at fAe 'ocaml'. '"OCAML' Search M Reg Examples Packages... All Packages
edl.tor /eve/ 'molac' asUppercase -> 'MOLAC'

Browse Senders Implementors Versions Inheritance Hierarchy

Use an example to find a method in the system.

Ehdlh? éy ugage/examP/e will find the message #, for strings concatenation

’k N PA 2. -2 will find the message #negated
/’ e 'h ara 3 will find the mess #factorial

/ will find the message #min:max:

FUNCTION IN AN
CODEBASE
Finding by typec /
like with Hoogle @as’ke//)

HOOg)\e [@->b)->[a1-> [b] | [‘set:stackage - | search

Packages i (a->b)->[a]->[b]
= isiexact &

In Type we troust !

(and it ic & very good cpecification tosl)

= base & map :: (a->b)->[a] -> [b]
- hackell-ai-bace IR RN 1 R A R < A NI 27 R O I N I T N A



A VERY DESIRED FEATURE! . ocamivogi

SINCE 2015 - ocamliscope

- ocamiscope2
- ocp-index

Type-directed API search #459

® Open) ghost opened this issue on Oct 29, 2015 - 7 comments

m ghost commented on Oct 29, 2015
and the not
This is a feature request.
] well docvmented
It would be really nice if Mgrlin could perform Cog-like type-directed searches, similar to S'earch by Po/ar;ty
what Searchpattern does in Coq.

in Merlin

The main use case I would have for this feature would be to query "which functions can
produce a type M.t"? Or "which functions use this type M.t"? All that in the context of a large
code base where the user needs a value of type c.t and he knows that function f: A.t -
> B.t -> C.t exists, but then he wonders how to produce a B.t inorder to giveitto f,

and then he finds out after much effort that a function g: D.t -> B.t exists, but then he
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Every function can be declared as
type [-'a, +'b] t=‘a -> ‘b

/

a ¢ contravariont b ic covariant
-string +int
+int —%loat

S L LUIPOLARITY SEARCHE
\\ minus for contravariant

plus for covariant ~= Alagging variances allowe vs fo
define a very cmall distance
computation



-string +option Every function can be declared as

no support for type (-’a, +'b) t=‘a->"‘b
parametric /
polymorp higm a i¢ contravariant b is covariant

| e 1WNYPOLARITY SEARCHY,

+int —%loat
-int -int +int

\\ minus for contravariant

/b/“g For covariant >~ f/aggiug variances allowe vs o
define a very cmall distance
computation



r Hard to vee but a proof that Merlin can fold definition

-string +option Every function can be declared as

no support for type (-’a, +'b) t=‘a->"‘b
parametric /
polymorp higm a i¢ contravariant b is covariant

| e 1WNYPOLARITY SEARCHY,

+int -float
-int -int +int

\\ minus for contravariant

/b/“g For covariant >~ f/aggiug variances allowe vs to
define a very cmall distance
computation
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clye

Type indexing in OCaml: search and find functions
in a large ecosystem
Gabriel RADANNE, Inria CASH/LIP
Laure Gonnord — Grenoble INP/LCIS & LIP/CASH
2021-2022

1 Context

Sometimes, we need a function so deeply that we have to go out and search for it. How do we find it ? Sometimes,
we have a precise idea of the desired type : “this function has at least 2 parameters, a bike and a date and returns
a boolean value”. We will then search at some precise places (the directory containing the Bike module, for




\IEITHE TIME

Cherlodoc

Dow:’:‘ng

‘ 'a list » ('a > 'b) = 'b list

Resultsfor : 'a list — ('a - 'b) — 'b list
ocaml
val Stdlib.List.map : ('a - 'b) - 'a list - 'b list
map f [al; ...; an] applies function ftoal, ..., an,andbuildsthelist [f al; ...; f an] with the results returned by f.
ocaml
val Stdlib.List.rev_map : ('a —» 'b) — 'a list - 'b list
rev_map f 1 givesthe sameresultasrev (map f 1), butis more efficient.
ocaml
val Stdlib.ListLabels.map : f:('a - 'b) — 'a list — 'b list

map ~f [al; ...; an] appliesfunction ftoal, ..., an,andbuildsthelist [f al; ...; f an] withthe results returned by f.
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Function)
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ocaml

s : ' ' ' : i . 1 Context
val Stdlib.ListLabels.map : f:('a - 'b) — 'a list — 'b list
Sometimes, we need a function so deeply that we have to go out and search for it. How do we find it ? Sometimes,
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Stdlib.List.rev_map : ('a —» 'b) — 'a list - 'b list

rev_map f 1 givesthe sameresultasrev (map f 1), butis more efficient.

ocaml

Stdlib.ListLabels.map : f:('a —» 'b) —» 'a list —» 'b list

map ~f [al; ...; an] appliesfunction f toal, ...

, an,and builds the list [f al; ...

; T an] with the results returned by f.
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1 Context

Sometimes, we need a function so deeply that we have to go out and search for it. How do we find it ? Sometimes,
we have a precise idea of the desired type : “this function has at least 2 parameters, a bike and a date and returns
a boolean value”. We will then search at some precise places (the directory containing the Bike module, for




SHERLODOC INTEGRATION INSIDE
MERLIN



withouvt indexation lbarz‘
/ and more precice Type parameters reprecentation

SHERLODOC INTEGRATION INSIDE
MERLIN



withouvt indexation lbarf
/ and more precice Type parameters reprecentation

SHERLODOC INTEGRATION INSIDE
MERLIN

We give a standard representation for a query and OCaml types
We normalize parameters types (making ‘a -> ‘b isomorphic to ‘c -> ‘d)
We create a list of path and computing distances with specific
heuristics to every “cases” (ie, Damareau levensthein distance for
Type constructors, and relaxed distance betweena*b->canda->b
-> ¢, to capture more isomorphism)

We use a stable-marriage algorithm on the matrix (for input
parameters) to find the best-scored path

And we have a score !
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We give a standard representation for a query and OCaml types
We normalize parameters types (making ‘a -> ‘b isomorphic to ‘c -> ‘d)
We create a list of path and computing distances with specific
heuristics to every “cases” (ie, Damareau levensthein distance for
Type constructors, and relaxed distance betweena*b->canda->b
-> ¢, to capture more isomorphism)

We use a stable-marriage algorithm on the matrix (for input
parameters) to find the best-scored path

And we have a score ! Ahd Adalfhy sgome DX 7‘00/
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Future improvement:

- Better heuristics for tycon

- Support for modules, objects, labelled
arguments and polymorphic variant
(modulo isomorphism)

- Taking account of user-feedback
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/ Questione ?
BEYOND THE BASICS OF |y

ADVANGED IDE SERVIGES
FOR ALY

Xavier Van de Woestyne - @vdwx



